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PREFACE

Thirty years ago, the computer. was' a virtually unheard of entity.
‘Today, its presence is felt in almost every facet of our 1lives. ' Who
would have believed in 1940 that, in less than thirty years, our
weather would be monitored by space satellites; that our cataloque
ordering would be done via direct communication with a machine; or
that our children would not be relying solely on the teacher for edu-
cation, but Instead receiving assistance from an electronic device
called a computer? Yes, In just a very short period of time, the com-
puter has progressed from a laboratory curiosity to one of the most
relied upon machines In history. :

It has gained this status by reason of its two properties. They are,
fts ability to perform accurate calculations at speeds vastly superior
to that of man, and its tremendous capacity to retain mountains of in-
formation in the form of facts and figures, retrievable at a moment's
notice, Both of these properties are increasing all the time as new
technological innovations are developed. : '

Speed and instant access to information have enabled the computer to
‘become such a necessary requirement in the science, business and edu-
cational communities. But, at the same time, it has remained a
mysterious 'box'" to the large segment of the population. Two factors
are responslible for this paradoxical situation. The first one is
availability. Very few people have even seen a computer, let alone
used one. Because of its typical cost and the expenses involved in
maintaining the people required to run it, the computer usually can be
found only in universities and big businesses. With a purchase price
of a few million dollars or a monthly rental fee of several thousands,
not too many companies can afford the luxury of having one of these
gadgets on their premises. Those that do are confronted with the
second reason for its alien-like treatment.

Once a person has access to a computer, he must know its "Janguage' in
order to use it in ahy meaningful way. This language may be COBOL, or
Fortran, or some other for which he has taken a three to six month
course to learn. Most people who are using the computer, and almost
all of those who should be using it, do not have this amount of time
available to them for such an activity. Therefore they have to rely
on '"computer experts'' to. act as ‘interfaces between themselves and the
computer, thus creating an additional problem. Maybe you have already
encountered this. '



The computer experts are comprised of "analysts' and ‘''programmers'.
The analysts analyze your problem, and the programmers convert the
solution Into computer readable form. Both are experts Iin their re-
spective fields. Unfortunately, they are not experts in yours. Be-
cause of this, clear communication between you and the experts becomes
a critical necessity, which, in practically every instance is an un-
attainable commodity. This means It may take the experts several at-
tempts at finding a solution to your problem before they come up with
one that you will accept. It may not be exactly the one you wanted,
but, In order to start getting some tangible results, you take It.
One can quickly see why a negative attitude exists among '"non com-
puter' people.’ ' : ‘

So, for these two reasons, availability and ease of use, Micro
Computer Machines has developed the MCM/70. It Is a desk=top computer
that weighs approximately twenty pounds .and offers the most powerful,
yet easy to learn and use computer language available today. The name
of this language is APL (an acronym taken from a book entitled "A Pro-
gramming Language' written by Dr, Kenneth E, lverson and published by
John MWiley & Sons). You will find that, after only a brief exposure
to the language and to ‘the MCM/70, you will be performing computer ap-
plications which would normally take you weeks to do with any other
language. '

J. Morgan Smyth
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Chapter 1: FEATURES OF THE MCM/70

Before wusing the MCM/70 computer, you should become familiar with its
three main features. On the basic unit, these include the keyboard,
the display screen and the computer's memory. The two most noticeable
features are the keyboard and the display screen shown in the 11lus~-
tration below, The third feature, the computer's memory, which plays
a major role In every operation performed by the MCM/70, is not
visable in figure 1.1 but s discussed in detail later on In this
chapter,

tape cassette

. housin
display screen &

keyboard

Figure 1.1: Typical MCM/70 Computer

One additional feature which is not standard on the basic unit but is.
offered as an option is the magnetic tape cassette. Since the wvast
majority of the existing MCM/70's are equipped with the cassette drive
mechanism, a description of its characteristics has been included with
the descriptions of the other three features. |f your computer has

this feature, you will be interested in Appendix C of this book, as it
describes how the cassette is utilized.

Keyboard

l1lustrated 1In figure 1.2 is a layout of the MCM/70 keyboard. It is
like a regular typewriter keyboard except that most of the lower shift
key positions contain all the capitalized letters of the alphabet, and
all the upper shift positions are occupied by various symbols. Some
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but most are probably quite

look familiar
i see that these symbols form

of these symbols may
As you read further, you will

In fact, these symbols play such

i of

foreign.
the foundation of the MCM/70 system.
in the computer's utilization that the majority
individual properties and how

a predominant role
is devoted to explaining their

this book
each one is used.
Display Screen
Figure 1.3 shows the MCM/70 character display screen. All input by
the user and all output by the computer is displayed on this screen,
The displayed characters are formed from a 5 x 7 illuminating dot
matrix. In the example below, the solid block of illuminated dots

MCM/70 Display Screen

Figure 1.3:

S

T,

e,
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appearing to the right of the displayed characters is called the
cursor. It indicates where the next character will be displayed when
it is typed in by the user.

Up to 32 characters can be displayed on the screen at-any‘one time.
Below, figure 1.4 illustrates a '"full'" screen with all of its 32
display positions occupied by various characters. |In cases where the

Figure 1.4: A "Full" Screen

input exceeds this limit, the computer will automatically shift all
the characters it is currently displaying one position to the left as
each additional «character |is entered. Figure 1.5 shows the above
screen after one additional character has been entered. Notice the
A disappeared when the 6 was typed. The 4 still exists in the

Figure 1.5: The Moving Window Effect

~computer's memory and Is still part of the input data, even though it
.does not physically appear on the screen., This technique is known as
the movin window, The window moves one position to the right for
each additional keystroke, allowing you to view the 31 most recent
characters entered. |If you wish to see part of the input entered but’
not currently being displayed on the .screen, 'you press the BKSP
(backspace) key once to get each character to display. By pressing
the BKSP key once, the display screen in figure 1.5 is changed to
look exactly like that in figure 1.4, But, unlike the input in figure
1.4, the added character 6 is now part of the input. Up to 85 <char-
acters can be entered as input at any one time.



Main Memory

Inside the MCM/70 there is a portion of Its internal components that
make up its main memory, This section, known as the user's workspace,
serves both- as a storage device and as a scratchpad. Any programs
written and any data defined get stored here. Any computations per-
formed are also done within this area.

At the beglinning of each session, the workspace is completely empty.
As new programs are written and new data defined, the workspace area
available gradually begins to fill up. Approximately 1,500 bytes,
which is equivalent to 1,500 characters, can be stored 1in the basic
MCM/70., If the memory becomes full, you must perform a little '"house-
keeping' to make sure there Is enough room for any additional data you
wish to enter. This can be done by selectively erasing items, which
is discussed In Chapter 2, or by clearing the memory entirely. One
way to clear it 1|Is to terminate the session and start a new one,
Problems of over loading the workspace can be avoided if your computer
Is equipped with a tape cassette attachment.

Tape Cassette Option

The purpose of the tape cassette is twofold. On one hand it acts as
an extension to the size of the computer's memory, and on the other it
serves as an excellent offline storage device and exchange medium.
Each cassette has more than 100,000 bytes of wusable storage space.
This means a virtually wunlimited number of reusable programs and

300 FEET
914 METRES

Figure 1.6: Tape Cassette




data can be written and saved on these cassettes. You can have
several cassettes with each one containing routines that perform
specific tasks. For. Instance, you could have an accounts receiveable
tape comprised of your A/R file and the necessary programs to access
and maintain it. You could have a tape containing nothing but
statistical packages; or one that does simulation modelling; or even
one for storing routines that perform computer assisted learning func-
tions such as spelling and typing drills. You can quickly establish
an entire library of these tapes; with each labelled according to the
particular subject area It covers. Apart from the possible uses of
the cassette when it Is offline, online, It becomes part of the com-
puter's main memory, immediately accessable by the computer whenever
any of its contents are requested. The way it works Is quite simple,-
Because all computations take place within the 1,500 byte workspace,
the system must make sure there Is enough space available to perform
any immediate tasks before trylng to do them. If there s not, the
computer will automatically start transferring Items from the work-
space onto the tape until sufficient space is available.

The opposite is true when retrieving data from the cassette. If cer-
tain items are requested by the user, the system will first search for
them In Its main memory, then go to the cassette in order to carry out
the request. Both reading from the cassette and writing onto it are
‘done automatically without any user intervention. The only indication
that the cassette is being referenced at all is by 1Its visual move-
ments. More information on this subject is covered In Appendix B,



Chapter 2: o CHARACTERISTICS OF THE MCM/APL SYSTEM

Apart from its external features, the MCM/70 has one additlional fea-
ture that makes it the most powerful microcomputer available today.
This feature 1Is called the MCM/APL system. Based on IBM's APL\360
system, MCM/APL Is the computer langquage used by the MCM/70., It
offers the user an easy to learn, easy to use, computer system to per-
form extremely complex tasks in a simple, concise and interactive
manner, The power and flexibility of the system will become apparent
as you read the rest of this chapter, plus those that follow, and do
each set of practice exercises.

Switching Oh

The procedure for starting the MCM/70 is the same as for an electric
typewriter or desk calculator. Simply plug It In and press the START
key. To indicate it 1is ready for use, the computer displays
MCM/APL on the screen, Press the RETURN key to erase this message'

Switching Off
Switching It off |Is just as easy. Type In O0FF only and press the

RETURN key. The reason why this particular set of symbols 1Is wused
rather than an OFF switch is explained fully in Chapter 21.

Modes of Operation

MCM/APL has two different 'modes'!" of operation. One is called exe-
cution mode and the other is called definition mode. In execution
mode, the MCM/70 Immediately acts upon whatever you type In as soon as
you press the RETURN key. In definition mode, It serves as an online

i




program writing and editing facility, Chapters & and § discuss iIn
detail all the various characteristics of this mode.

When the computer 1[s In execution mode, whatever is entered by the
user is Immediately evaluated by the computer. For instance, by
entering the mathematical statement 2 + 3 , the computer immediately
displays its result of 5 ,

243 -=———the Input statement
5 - the computer's answer

Each subsequent statement you enter is computed with the same degree
of promptness, much like that of a desk calculator. This 1Is why
execution mode Is often referred to as calculator mode, as both de-
scriptions are appropriate. Below are a few more examples of some
rather elementary mathematical problems being solved by the MCM/70 in
execution mode. For purposes of simplicity, those entered by the user
are Indented six spaces from the left margin.

10+17
27

17-10.5
6.5

5x12
60

5446
9

In  these, and all ensuing examples, the computer's responses appear
immediately beneath the inputs to which they refer, while In actual
fact, the responses displayed on the screen by the computer replace
the statement entered by the user. The dot matrix display has been
substituted by the type font used In these examples to facilitate the
printing of this book. The font chosen Is the same as that wused by
other textbooks written on the subject of APL. Try each of the above
examples, After you have entered each statement, press the RETURN key
to signal to the computer that you have finished typing your Input.,
Press the RETURN key again to erase the computer's response. You will
notice some of the dots on the screen flash on and off after the
RETURN key has been pressed. This Is the computer computing.

Here are a few more examples:

10-17



Notice that the -~ symbol representing the. negatlve 7 result s
different from the one used in minus operations. The negative symbol

resides on the upper shift position of the 2 key and the minus sym-
bol - is on the plus key. To enter a negative value, we must in-
clude the negative sign.

“7+10
3

10+ 7
3

10-"7
17 :

Think of other exampfes and try them out to gét‘a still beftér'ldea'is

to how the MCM/70 works in this mode. One thing you will notice is -

that while the computer Is evaluating your Input, you are not able to
enter any other input until It has completed all of 1its calculations

and has displayed the result. |In this way, the computer is able to
carry out its computations In an uninterrupted environment. |f you do
want to stop it at any time, you must press the CTRL (control) key
until the lights on the screen quite flashing, and then press the

+ key (upper shift «),
[" 'l< < > > # A
1 | 4 6178 0
IBBANOBRE
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Figure 2.1: MCM/APL KEYBOARD

This will cause the computer to abandon whatever it Is doing and wait
for your next set of instructions. Consult Appendix A for more
information on how to interrupt the computer while it s processing
your statements,

e .




Degree of Accuracy

All calculations performed by the MCM/70 are to an accuracy of sixteen
decimal places. Usually the system displays ‘only the first five
though, with rounding being done on the fifth. Thils can be adjusted
to display anywhere from the first two digits all the way to sixteen.
For instance, in the following example, five significant digits are
displayed, ‘ '

8+3
2.6667

This is the preset limit to which'the MCM/70 defaults unless otherwise
Instructed. To reset It to say 15 significant digits, the following
expression Is used: :

: (0PpP+«15

|
The 0PP Is called a system variable. It contains the current setting
of the '"print precision” for the MCHM/APL system. Above, it was reset

to 15.] Now, by typing in the same calculation as above, the result
exhibits the type of precision the MCM/70 uses:

8¢3
2.66666666666667

All ensuing computer responses will be displayed to this accuracy
until the setting is changed to something else. But if the computer
is switched off and on again, or if the workspace is cleared of all
its contents, the system will automatically set the printing precision
back to five. ' ‘

OPP is a predefined part of the system. |t Is just one of several
system variables available which allow you to alter the prevailing
conditions of the system at any time during the session. A complete
list of all the system variables along with their respective meanings
are contained in Chapter 21. '



Error Reports

Occasionally you will enter statements which cannot be successfully
.executed by the computer. This could be caused by any number of
reasons, But when it does, the computer will tell you eéxactly which
character is causing the problem and what type of problem it Is. For
Instance, If you try to do something that Is mathematically Impossible
or you do not express yourself explicitly enough, the system will tell
you so. Here Is an example of just such an error:

6+0
DOMAIN ERROR

B0

The error report dlspiéydd indicates that.divisioﬁ by zero is outside
the '""domain'" of acceptable divisors, The first line of the report

describes the type of error that has occured. The second line shows

where It occured. The cursor Is placed on the first character as-
sociated with the erroneous operation. ~ In this case It is the 6.
There are nine types of errors that can result within the MCM/70.
Chapter 20 describes them all, along with reasons for their
evocations. ’

Order of Execution

One of the characteristics of the MCM/APL system (and APL systems in
general) that deserves particular attention is ‘the manner {n which
statements are evaluated. |f asked to solve the problem 3 x 4 + 6, we
would instinctively multiply the 4 to the 3 to produce a produce of
12, then add the 6 to the 12 and arrive at the final result of 18,
Doing the multiplication before the addition is based on a rule taught
at the elementary level in school. It states that multiplication and
division are alwazs done before addition and subtraction, no ‘matter
where they appear in the equation., This is why we got the answer of
18 above. But If the same expression were entered Into the MCM/70 we
would get a result quite different from this, It would return an an-
swer of 30, :

3x4+6
30

The reason for this Is quite simple. The MCM/70 does not designate
priority to any of 1Its operations. It simply evaluates all ex-




35

pressions from right to left. Therefore, to get its result of 30, the

'MCM/70 adds the 6 to the & to produce a sum of 10 and then multiplies

the 3 by the 10. Here is a breakdown of the operation:

_Order of Execution
4 + 6

y

3 10

N ————
30 -

X - X

Here is another example:

5XU4+6+2

And here is a step by step description of its evaluation:

_ Order of Execution
5 x 3 6 ¢+ 2
. ————
5 x 7
| S —

35

+ -

The right to left order of execution holds true In all cases, no
matter what the operation may be., Priorities among the operators that
exist In conventional mathematics are completely absent in the MCM/APL
system. Thus the Input process is simplified by the elimination of
the need to worry about any hierarchy. But quite often it is desir-
able to perform certain operations before others, For Instance, in
the last example, If we wanted to add the 4 to the 6 and divide their
sum by 2, we would probably do it in two steps; the addition on one
line and the multiplication and division on another. This could be-
come quite awkward, especially if the statement 1Is fairly lengthy.
Therefore, to get around this, parentheses have been employed to
establish a priority system during statement execution. Here 1Is how
the statement could be executed with the addition being done before

- the division{



5x(4+6)+2
25

It Is evaluated in the following sequence:

Order of Execution

(4 + 6)

5 x ¥ 2

H 4
10 + 2
N p—

5x
25

Operations within the parentheses are evaluated In theVsame‘séquence
as those outside = from right to left.

input Format

The computer accepts your input in the same form as It appears on the
screen. This means the format you choose to enter your statements |s
entirely wup to you. You can leave any number of blanks between the

numbers and symbols (l.e., + and - ) you like. For Instance, here Is
the same operation -entered two times, the first with no spaces
separating the characters, and the second with several spaces

inserted. The resu]t in both cases Is the same.

3xy
12
3 X h
12 '
You can also vary the order in which the characters are entered. |In

either example above, you could have spaced over and typed in the U4,
then backspaced and typed in the 3 and the times sign, and still get
the same result. Here are the steps involved to do this:

[



A 14. cursor spaced over and the 4 typed.

2. B cursor backspaced to where the 3 Is to be
typed. : :

3. <Y | the rest of the statement Is typed.
Notice the cursor Is positfoned over the 4 In step 3 resulting in the
'!negative Image' of the 4 being displayed. If the RETURN key Is
pressed at this point, the result is still 12 because the cursor Is
‘not considered part of the input statement. It serves only to In-
dicate where the next character is to appear If one Is entered. By

displaying the negative Image of the character at the cursor posntion,
we can tell what the character is and where the cursor is.

Error Correction

When typing In statements it Is quite possible to press the wrong key
by accident. A 7 may be typed Instead of a 6 or an A instead of an S.
When this happens, the computer's evaluation will result in either an
error message, or worse still, the wrong answer. But wusually errors
are noticed before returning control back to the computer for its
evaluation. |Instead of pressing RETURN and letting the computer act
on the input, we simply "backspace' the cursor to the character in
error and "replace" It with the correct one. Here is an example of an
expression where 6 is supposed to be added to 5 but the "times' key is
pressed by mistake.

erroneous character
3-5x6
Before hitting the RETURN key, the error Is noticed. To correct it,
the BKSP (Backspace) key Is pressed two times to position the cursor

over the erroneous symbol and the plus sign is typed. The completed
operation looks like this: :

3-5+§



Now the RETURN key may be pressed and the computer will give you the
desired result. Here are the steps involved in correcting the error:

1. 3-5x6"" (original statement)
cursor here
, t Backspace key pressed until cursor here’
2. 3-5536 ‘ ‘
' y_ Plus $ign typed, then RETURN key pressed
3. 3"'5+ '
L, “s (computer's response)
N.B. When the cursor is backspaced over an existing character, the

I1luminated dots representing the character are turned off and those
within the 5 by 7 dot matrix which do not represent the character are
turned on, thus displaying the negative Image of the character.

Character Insertion and Deletion

Two other kinds of typing errors that can occur when entering input
are the accidental omission of a character(s) and the accidental in-
sertion of wundesired character(s). For Instance, suppose the state-
ment (2x3)+6 was mistakenly entered (2x3+6. Assuming the RETURN key
has not been pressed, here are the steps required to insert the miss-
ing character, allowing the line to be executed properly:

1. Backspace the cursor wuntil it Is positioned over the plus
sign. ' ’

2, Press-the'CTRL key.

3. While holding the CTRL key down, press the SPACE bar once.
This causes the characters +6 to shift one position to the

right, leaving a blank position where the cursor is. The
line now looks like this: '

(2x3+6
4, Key in the missing right parenthesis and press RETURN.
(2x3)e




Character deletion 1{is handled in the same manner, except Instead of
using the SPACE bar to do the eliminating, the BKSP key Is used.

Summarz

This chapter has 'given us the information needed to start up and
operate the MCM/70. We have seen that this task Is just as easy as the
start up procedures of either a typewriter or a desk top calculator.
The '"mode' of operation Is referred to as calculator or execution
mode., We saw also that when operating In thTs mode, all calculations
were performed to an accuracy of sixteen significant digits, the first
five of which were displayed on the screen.

We saw that errors can occur and, when they do, the computer lets us
know by stating the type and location of the problem encountered. 3
we are able to spot the errors before we return control back to the
computer, we can easily replace the erroneous parts with the proper
corrections, thus Insuring a successful execution. When the computer
does accept this Input of evaluation, It takes |t exactly as it
appears on the screen, regardless of the sequence in which it was
entered. '

Some of the characteristics we have seen of the MCM/APL system are
similar to those of many desk calculators, while still others go be-
yond this level of sophistication to offer an extremely powerful and
flexible means of evaluating mathematical expressions. Chapter. 3 de-
scribes even more features of this system that tend to take it out of
the calculator family and draw it closer to that of a general purpose
‘microcomputer,

Practice Exercises

1. Evaluate the following using the MCM/70:
(a) 7+5 (b) 6x18 (¢) 17-3.5

(d) 12:8 (e) 9.,75+3 (f) 3-"16.2



(g) 6x~.2 (h) 10+10+10 (1) 10x10+10

(j) wuxe-2 (k) 3.2%46.25x10 (V) 7+7-7x747

Write an APL expression to subtract negative four from poSifive
eleven, ' o

Write an APL expressnon to multlply six by seven and divide thelr
product by three.

Write an APL expressnon to sum up the numbers 1, 2, 10, 5, 3, and
b, '

Everyday a farmer collects, packages, and sells all the eggs his
hens can lay. How many eggs does this Involve If his daily col-
lections for one week are 22, 23, 26, 23, 22, 27, and 25 eggs?
When packaged, how many dozens does this represent?

If he'gets 83¢ a dozen, what is his weekly revenue?




Chapter 3¢ HORE OF THE SYSTEM'S CHARACTERISTICS

The previous <chapter demonstrated the ease with which mathematical
statements can be entered into the computer for evaluation. It also
illustrated how  the computer may be halted while in the process of
carrying out its execution, and how to edit portions of an Input
statement before <control is returned to the computer. |t showed how
the MCM/70 can be operated with the simplicity of a calculator, while’
at the same time being utilized in ways far beyond the capabilities
possessed by most calculators. This chapter further expands on this
by introducing wvariables, literals, and data structures known as
arrays, which can be defined within the MCM/APL system,

Variables

In all of our examples so far the computer's responses have been dis-
played on the screen. This is the one chance we have to see them, as
they are erased from the computer's memory as soon as the RETURN key
is pressed. This characteristic aids in keeping the memory space free
of unnecessary items, vyet at the same time it forces us to remember
those results that may be needed In future calculations. Instead of
resorting to this method of data retention, we can instruct the com-
puter to store its answers in its own memory. To do this, we must
give the storage location a name. Here |s an example of two numbers
being added together and their total being .stored in memory under an
arbitrarily chosen name: : :

A+8+7

Notice the result 15 1is not dSSpiéyed.- Only the cursor symbol ap-
pears. To display the contents of 4, we simply type In the letter.

4
15 ’

We can also use 4 in calculations just as we would a value.

 Ax3
45



6+4-13
3

A is called a variable, which means It can be reassigned different
data depending on the user's instructions,

Several variables can reside in the workspace at any one time and all
of them can be used in calculatlons.

. B+«10
| B
AxB
150 “
" C+AxB
c

150

To list the names of the variables presently in the workspace, the
following system function is used:

ava
to which the response in this case is

A
B
c

If, at any time, we wish to erase any of these variables from memory,
we use the system function [JEX and enclose the name(s) of the. vari-
able(s) to be erased, in quotes. Here is the variable 4 being erased
from memory: ' ’

OEx 'A°

If we again execute [JVA, we get the following:

. avAa




If we now try to use 4 in any way, the following occurs:

: Ax10
VALUE ERROR
B0

~(To find out more about system functions, see Chapter 21.)

Valid Variable Names

The variable names above were chosen on an arbitrary basis. When
| defining a wvariable, the name selected must fit the following
| criteria,

| 1. It must begin with a letter of the alphabet or the delta
| symbol 4, ' o
2. It may consist of the letters 4 to Z, the delta, and the

numbers from 0 to 9 as .long as the latter are not the first
characters in the name. '

3. It may contain any number of characters, but the first three
must be unique as the system looks at the first three only.

4, It cannot contain any spaces or blank characters.

5. - It cannot be the same name as any. programs that may already
exist in the workspace.

Here are some typical valid and Invalid variable names:

Valid Invalid
V| . 1X
TOTAL S-M

C12 XY

DAR AaD
XXX G/L

ST VN

A Orr



Since there 1Is a wide range of acceptable varfable names available,
you should try to ‘make each one meaningful, so that you can easily re-
late them to the data they represent. For instance, it makes more
sense to call the accumulation of a set of numbers something 1ike SUM
or TOT rather than giving It a name such as A or B, This way, as you
define more and more variables in your workspace, It Is much easier to
remember which names represent which values. : ‘

Literals

All  references to data, up to this point, have been to numbers. In
each instance, calculations were performed on Input ‘''data' and the
computer responded with 1its output ‘data" results. But the term
"data'" does not refer just to numbers; it applies to textua! material
as well. © For instance, the word "nature" Is classified as data. I f
we wished to enter this data Into the computer's memory, we would :do
so in the following manner: ‘ ' "

- . S+'NATURE"
|
Just as numeric data is stored, so too Is textual data. By
‘surrounding It in single quotation marks, the word 'nature' is Inter-
preted by the system as being literal as opposed to numeric. ‘The

quotes are not part of the data but serve only to _ categorize it as
being literal. ' ' ' '

S
NATURE

In. cases where a quote is supposed to be part of the text, a double
quote is used to represent this. :

Q«'ROBBIE''S!

Q
ROBBIE'S

If a quote s missihg or there is one too many entered, the system
responds accordingly.,




P«'DAVID'S'
VALUE ERROR
p«YavIDp's!®

When the literal 1Is a number, 1t takes on an entirely different
property than that of its numeric counterpart.

: 1242
DOMAIN ERROR
H2+2

In the above example, the character '2' |s distingﬁishable by the
system from the value 2,

Literals are used quite often during a session. They can serve as
headings for other numeric and literal output and they can also be
used as both input and output statements in programs, as we will see
'atero 3 ’ ’

)

Primitive Functions

So far we have been referring to the symbols + - x : as operators.
More specifically, they are predefined symbols which the computer re-
. cognizes as -representing various primitive functions. The word

"]primitive! means they already exist within the MCM/APL system and
need not be defined by the user. The word "function' Indicates that
each symbol performs a specific task. The plus sign + represents ad-
dition; the minus sign - means subtraction, and the times x and divide
t+ signs stand for multiplication and division respectively. The
routines or functions of each symbol are fixed, but the data each is
supplied is not. .For instance, to add the numbers 3 and. 4 together,
we would type:

34l

The two numbers could have been 6.2 and ~7 or 10000 and .001, and the
function would perform the same, adding the one number to the other.
These numbers are said to be arguments of the function. Together,
~with the function symbol, they form a statement or expression. The



expression
Its task Is to

symbol.

3+4 above s comprised of two arguments and one function

add the value 4 to the value 3.

Function Syntax

There

dya

bol.

Most functions can be used both monadically and dyadically.
a few examples of monadic uses of

so far.

S -7

7

When the
argument.

-7
7

I f the

0-

are two kinds of primitive functions
dyadic and the other Is called
¢ function.
the function symbol.
argument in this case always appears to the

argument is
equivalent, and vice versa.
the minus sign when the left

In MCM/APL. One is called
monadic, The expression 3+4 s g
has two arguments, one on each side of
argument, The

right of the function sym=-

This means it
A monadic functlon has only one

Dyadic Monadic
function function
3 4+ 4 + 4
left right lrgument
argument argument

Below are

some of the functions we hqve seen

minus ’sign Is used monadically, it changes the sign of its

the result becomes lts'-ncgatlve
This can be compared to the dyadic use of
argument is zero. -

positive,




Using the divide sign monadically produces the reciprocal of its
argument. .

_ m
.25

Finding the reciprocal of a value is the same as dividing that value
‘into one. ' '

1+4
025 '

Arrazs

The arguments of a function are not only categorized by their numeric
or literal properties, but also according to their rank and dimension.
So far, all our examples have involved one number performing an op-
eration on another. For Instance, 3+4 resulted in the 4 being added
to the 3. Each of these arguments Is referred to by the computer as
being a scalar, or a single value. But often our calculations Involve
several numbers. They could be figures representing various inventory
quantities or observations from an experiment. We may want to tally
up our current Inventory levels or measure the frequency distribution
of our experiment findings, To do either of these things requires the
Input of many numbers. When this happens, the numbers are no longer
referred to as scalars or individual quantities, but are collectively
called an array of numbers.

. Arrays - can take on many sizes and shapes and can vary from a single
Item all the way to several hundred. But basically all arrays fall
into‘four categories. ~ They are: '

1. . Scalar

2, \Vector

3 _Hatrlx

4., Complex array



Vectors |
We saw that a single datum s called a scalar. A vector can be
thought of as several scalars placed in a line to form a 1Tlist or
chain. For Instance, the following series of numbers Is a vector:
56 2 3 9.
So too is the literal
'RHINOCEROS'
You will remember in the previous section on literals, we saw how to

classify the words NATURE and ROBBIE'S as literals. But what you may
not have noticed was that we actually defined literal vectors.

Each scalar within a vector Is said to be a component or element of
the vector, The numeric vector 5 6 2 3 9 has flve components and the
literal vector RHINOCEROS has ten components. To create a numeric

vector, we simply type in all the components, each separated from the

others by at least one space.

0BS<«2.6 "7 2 4 1 0

OBS _
‘2.6 "7 2 4 1 o

You will see in Chapter 6 a primitive funégjon for generating'vectors
which is useful in certain applications where particular numbering
series are desired. o o

Matrices -. ' ’

Apart from having just vectors, or strings of numbers and characters,
we can also have matrices. A matrix Is any array which —is - arranged
into rows and columns. In figure 3.1, the block of numbers forms a
matrix consisting of 4 rows and 5 columns, '

3D




Dow-Jones U.S. Exchange Index

30 20 15 65

, Ind,. Rails Util. Stocks

Mar. 11 .... - 888.45 197.08  93.72  281.82
Mar. 8 .... 878.05  195.45 93.69  279.27
Mar. 7 .... 869.06 ° 194.83 93.56  277.30
Mar. 6 .... 879.85  197.46 93.85  280.43
Mar. 5 .... 872.42  197.62 93.53  278.96
Mo. Ago .... 803.90 180.01  93.37  259.54
Yr. Ago ..., 969.75 194.13  110.46  303.53
1973-74 High 1,051.70 228.10  120.72. 334.08
1973-74 Low 788.31  151.97 84.42  247.67

Figure 3.1: Dow-Jones Index.

The statistics for the Industrials reside in column 1, those for rails
.are In column 2 and so on, while the closing fiqures for the various
indices on March 11 are In row 1, and those for March 8 are in row 2.

This next example in figure 3.2 Is an Illustration of a matrix with 8
rows and 7 columns, ‘

HOCKEY RECORD

Eastern Division

G W L T F A P
Boston 78 52 17 9 347 215 113
Montreal 78 45 24 9 293 240 99
N.Y. Rangers 78 40- 24 14 300 251 94
Toronto 78 35 27 16 274 230 86
Buffalo 78 32 34 12 242 250 76
Detroit 78 29 39 10 255 319 68
Vancouver 78 24 43 11 224 296 59

N.Y. Islanders 78 '19 41 18 182 247 56

Figure 3.2: National Hockéy League Standings

3.9



When matrices are defined 1In the computer, they appear In the same
format as in the two illustrations above. . Here is an example In-
volving a variable called NHL whose contents are being displayed:

WHL
78 52 17 g 347 215 113
78 45 24 9 293 240 99
78 40 24 14 300 251 9y
78 35 27 16 274 230 86
78 32 3y 12 242 250 76
78 29 39 10 255 © 319 68
78 24 43 11 224 296 59
78 19 41 18 182 247 56

As you can see, the contents of NHL appear In the same type of config-
uration as those in fiqure 3.3. When the system is asked to display a
matrix, 1[It does so a row at a time. After displaying the first row,
it waits for you to press the RETURN key before displaying the next
row, It lindicates this by also displaying a small rectangle of |1~
luminated dots at the extreme right side of the screen. There is a
way to have the computer automatically display each row after a given
amount of time, as you will see In Chapter 12.

Dimension And Rank

Both vectors and matrices are said to have both magnitude and
direction. Their magnitude is depicted by the values they represent
and their direction s symbolized by their structure. Because a
vector is a single string of numbers or characters, It is defined as
having one direction.

Vector:

Matrices on the other hand have 2 directions,

Matrix:




" You can have arrays with 3 directions, which are called 3-dimensional,
or complex arrays.

3-dimensional Array: /////4

The number of directions can be from | up to a possible 32. The
number of directions an array has Is referred .to as Its rank. A vec-
tor has a rank of 1, a matrix has a rank of 2, and a 3-dimensional ar-
ray has a rank of 3. A scalar, which Is also classified as an array,
has no rank at all, as it has no direction. Its single property Is
magnitude only, '

'Array Type Rank
Scalar 0
Vector ]
Matrix .2
Complex array 3-32

The direction of an array Is called its dimension. This way not only
is the direction of the array accounted for, but also the extent to

which it -goes. To determine the dimensions of an array, we use the
dimension of function, which is discussed in Chapter 11. Dimensions

and ranks of arrays are referred to later when we discuss indexing in-
dividual array components. Their ranks and dimensions must be known
before Indexing can occur.

Complex Arrays

Any array whose rank exceeds 2 is called a multidimensional or complex
array. Although an array that has any more than 3 dimensions Is dif-
ficult to envision, it can have up to 32 dimensions. Like a matrix, a
multidimensional array has rows and columns, plus additional dim-
ensions referred to as planes. Here Is an example of a 3-dimensional
array which has 2 planes, each with 3 rows and 4 columns and contains
the numbers 1 to 2u.



1 16
: 20
9 g 24

Obviously the display screen cannot show any more than one row at a
time, but for clarification sake, all matrices and multidimensional
arrays will appear in 2-dimensional form. The above (2x3x4) array
takes on the following form:

1 2 3 m .
5 6 7 8 plane 1
9 10 11 12

13 . 14 15 16 |
17 18 i9 20 plane 2
21 22 23 24

Arrays of various ranks appearing In the following examples will be
shown in a way to facilitate you In recognizing their dimensions,
Each plane will be separated by a blank line.

Summarz

This chapter has Introduced you to variables and the various prop-
erties your data can possess., You saw that data can be either literal
or numeric, and that It need not be just Individual characters and
numbers. It can be organized into lists (vectors), tables (matrices),
cubes (3-dimensional arrays), and even structures of greater




‘complexity. You saw how vectors were created, but you did not see how
arrays of greater ranks were built. This has been left for a later
chapter as |t Involves a little more knowledge of the APL language
than has been covered to this point. But, by knowing how vectors are
formed, you may try experimenting, using them as arguments to the
primitives you have learned. Remember, the functions can be used both
monadically and dyadically., Of the four primitives you have seen,
(+ - x #), only two were illustrated in the section dealing with the
"monadic'" concept. See If you can determine the purpose of the times.
and plus functions when they are used monadically. Both are discussed
in the next chapter along with several new functions,

Practice Exercises

1. Evaluate the following expression, given
v oes
B+« 10
C+.5
(a) Aax7 | . (b) u420%4x1y (c, A30
(d)  4xc (e) -AzcC+B (f) 4:Cc+B220
(g) A+B+C (h) c¢-B (1) -B
j» --8 . (k) 6--B - () ¢
(m) AxBxC : (n) 30+4xBxC - (o) BiicC
2.»] Enter the followiﬁg statement and then disp}ay the contents of

all three variables.

A+B+C+10
3. Which of the following variable names are invalid?
(a) 4 (b) aaa | (¢) F_D
(d) MaxIMUM - (e) er (f) zvy
(g) PAL (h) a2a (1) Y268y



Assign the numeric vector 1 2 3 4 5 to a variable called VEC_ahd»

assign the literal vector VECTOR IS to the variable HD.

Using the vector VEC created In number 4, execute the following

statements:
(a) VvEC+s (b) VEC-10

(¢) 2xVEC o " (d)  T3+VEC

Using the formula

Centigrade = (3 x Fahrenheit - 32)

-convért'67 degrees fahrenheit into centigrade.

Nhat.is the total area of a 15 by 12 foot room?

“Area = Jength x width




Chapter 4&4: ' SCALAR FUNCTIONS

The previous chapters have demonstrated the ease with which arithmetic
calculations can be performed on the MCM/70. The functions performed
were addition, subtraction, multiplication and division. This chapter
introduces a few more functions that go beyond the arithmetic level of
mathematics to that of algebra. These functions deal with exponents
and logarithms and magnitudinal comparisons. Although their descrip-
tions  make them sound complicated, they are extremely easy to use and
understand. This chapter also employs vectors in many of Its examples
to illustrate that the functions discussed here can accept arrays of
all sizes and shapes as their arguments, just as they do with scalars.

Definition of a Scalar Function

All the primitive functions 1In MCM/APL are divided into two
- categories. One is called scalar functions and the other |s -called
mixed functions. The basic di fferences between the two are the scalar
functions operate on a 'one-for-one' basis and the sizes and shapes of .
their results are directly related to those of their arguments.

As stated earlier, a scalar is defined as being a single datum. The
value 67 and  the letter C are both scalars. The term ‘''scalar
function" also refers to the same “unit" type definition, but in a
slightly different context. When the addition function s used dyad-
ically with two scalars as arguments, it computes their total by ad-
ding one to the other. :

3+4
7

But when the arguments are two vectors, the result looks quite differ-
-ent,

2 3+4 5
6 8

Since it works on a "one-for-one' basis, this function performs the
addition by the following method:



S
2 3+4 5

The first element in the right argument is added to the first element
in the left; and the second element in the left argument is added to
the second 1in the left. When used dyadically, the addition function
Is called a scalar dyadic function. Here are a few more examples of
scalar dyadic functions performing calculations on varlious vector
arguments:

18 25 6442 5 16
8 &5 4

_ 4710 2-2 10 7 4
2 3 3 "2

2 4x100 100
200 400 '

When all the values in one of the arguments are ldentical, we need to
key in only one of the values. This last example could also have been
expressed In the following manner:

2 4x100
200 400

The system automatically repeats the value 100 until both arguments
are of equal lengths, But this only happens If one of the arguments
contains one number. Look at what happens when both arguments have
more than one value each, but are of unequal length.

3 7x5 9 8
LENGTH ERROR
B 7x5 9 8




The system 1{is wunable to determine which number Is supposed to be
multiplied by which other number. So, Instead of making an assumption
about the intention, it terminates with the above message to Indicate
its problem.

When these functions are wused monadically, they are referred to as
scalar monadic functions. y

£5 4 2
.2 .25 .5

-6 4,2 "10
6 4,2 10

One of the prominent characteristics of scalar functions is the direct
relationship between their arguments and results. Apart from correct,
the ‘results take on the same sizes and shapes as their respective
arguments. Scalar arguments produce scalar results, vector arguments
give vector results and so on for all arrays. |f one argument is a
scalar, the result assumes. the size and shape of the other argument.

Result Lt. Arg. Rt. Arg.
scalar « scalar + scalar
‘vector <« vector + scalar
vector <« scalar + ‘vector
vector <« vecfor + | vectO{
ﬁatri* T+ matrixi + scalar
“matrix « scalar +  matrix
etc.

In our example of 4 5x10 6 the two 2-efiement arguments produced a 2-
element result., Here are some more illustrations to further show this
correlation: '



22

There are several such scalar functions In the MCM/APL system, many of
which perform monadically and dyadically. The functions we have seen
so far (+ - x ¢ ) have all been scalar functions. The rest, which
include the symbols ‘
/
* @ [ L | !0 < s =25>2V AMN¥n~and ?

are discussed in this, and other chapters., This chapter will describe
the set of functions characterized by the symbols » @ [ and . But
before we start to discuss them, there are two scalar functions whose
dyadic uses have been explained but we have still to cover their mon-
adic properties. '

Slgnum

When wused monadically, the multiplication function indicates the Slgn
of its argument.

x4 4

x67 14 0 7.2
1 1 0 "1 ‘

If the value |Is positive, the system Indicates this by returning a
result of 1, |If It is zero or a negative value, the response is 0 or
1 respectively. '




Identitz‘

Just to round out the series, the plus function can also be used mona-
dically, '

The system assumes a zero to be the left argument. In the case where
one argument is a scalar and the-other is not, you will recall that
the scalar |Is expanded in dimension and rank until it is of the same
structure as the non-scalar argument.

4:8 2 16
.5 .2 .25

The dimension and rank of the result of arguments like this are always
equal to that of the non-scalar argument.

Exponéntiation'

When writing an expression to illustrate that a number is to be raised
to a power of some other number, we typically symbolize this operation
as X' , where X is to be raised to the power Y. Since this can be a
rather confusing way of expressing it and, since power operations are
very similar to add, subtract, multiply and divide type operations,
the power function is written as 2x3, For Instance, {If we want to
raise the value 2 to the power of 3, here is how we would do It:

2%3
8

‘And if we want to raise 2 to several powers,

2%x2 3 4 §
L 8 16 32

or raise several values to one or more powers, we would express It
like this: ' ‘ :

2 3 4 5%2
4 9 16 25



2 3 bry 3 2
16 27 16

Apart from finding the squares and cubes of numbers, the power func-
tion Is also able to find their roots. For example, in order to find
the square root of a number, you simply raise it to half its power.
Here is the expression to find the square root of 16:

16%.,5
y

and here is the cube root of 125:

125%1%3
5
or just
125%%3

5
since"the‘monadic divide function assumes a 1 to be the left argument.

As we get into very large numbers, the system alters its output format
slightly to eliminate the need for displaying all the repeating zeros
that can occur. For instance, If we raised the number 20 to the power
of 9 the operation would look like this: K

20*9
5.12F11

which really means 51,200,000,000,000 is the correct answer, The let~
ter £ In the result is an exponential notation meaning !''times 10 to
the power of."

We can also use E format for entering data.

10F1+2

102

10E3+7E4
80000

5,12F11%%9
20




If the result hapbenéd to be Qery small, the same kind of notation
would be displayed.

.01%6
1E712

Of course there are limits to _the range of numbers that can be
created, and, when we try to exceed this limit, the system will tell
us so. ‘ " ' : ’ '

100%100
RANGE ERROR
Boox100

The aCcepfable range ]s'anywhére'from‘7.237E75 to ~7.237E75.

Exponential

If the power function Is used monadically the system assumes the left
argument to be e, the base of the system of natural ~logarithms, or

2.7182818.¢...

*1
2.7183
. %x,2 T10
1.2214 4.5E°5



Logarithms

The logarithm function is closely connected to the exponential func-
tion. To raise a value to a certain power, we write the expression as
XxY with X representing the value to be raised and Y being the expon-
ent. The logarithm function is written as Xe®Y and means 'to what
power must X be raised before It Is equal to Y?" The result Is the
exponent., - )

208
3

The above expression 1is read as "log 8, base 2'" and traditionally
written as '"log,8."

Here are some more examples:

9e81
2
1010 100 1000
1 2 3
The symbol ® does not appear on the keyboard. It is a combination of

the characters * and 0 (upper shift 0). The procedure for combining

the two Is either * backspace 0 or o backspace *. Theé sequence is not

Important.

Natural Logarithm

Monadically the logarithm symbol finds the '"natural log" of its arqu-
ment. |t uses the base of the natural logarithm, (e or 2.71828....)
as its left argument.

10
2.3028

It s usually written as '"log 10" and read as "log 10, base e.' Here
are of few more examples:




0100 200
4.6052 5.2983

®2.4 50

.87547 3.912

Since the natural log function 1is the Inverse of the exponentia
function, they negate each other. Here is a way to prove it:

*@2.4 50
2.4 50

Maximum

Imagine you are a teacher who has just given his students a fifty
question '"true-false' test. A perfect paper 1Is worth fifty marks,
with each right answer worth one mark and each wrong answer costing

"two marks. This means If someone got every question wrong, he would

end wup with a mark of "50, which Is not too Impressive looking on re-

‘port cards. So you establish a limit of zero as being the lowest pos-

sible mark anyone can receive, After grading the first ten tests and
adding up their final marks, you discover them to be the following:

23 42 '6 "10 15 "6 25 33 17 "2

Since you plan on storing these marks In your student record file, you
would like to enter the marks, as they are, and have the computer
handle the ones that fall below the zero limit. One way this could be
done is by means of the maximum function. Its role as a dyadic
function 1is to determine which of Its arguments is the greater. The
symbol used to represent this function Is the [ which 1Is 1located on
the S key,

4l 6
6 .
3[y 3,1 2

4 3,1 3



§

And so to solve our hypothetical problem, the function would look like
this:

023 42 6 “10 15 6 25 33 17 "2
23 42 6 0 15 0 25 33 17 0

thus simplifying our marking task and also making some of the
students' parents a little less sad. :

Ceiling
In its monadic syntax, the [ function "rounds up' Its argument to the
closest integer. For example,

[8.8
9
and

7.2 "2.3 6
8 "2 &

In the case of 2.3 the result of "2 is actually higher in value. |If
the argument is already an integer, its result remains the same.

Minimum
Just as the maximum function determined the greater of Its two
arguments, the minimum function | (upper shift D ) calculates ~the
lesser of the two.

4 6L7 3

T2.8172.7
2.7




Floor

The counterpart of the monadic [ , which rounds its argument up to the
closest integer(s), is the monadic L . It rounds its argument down to
the closest integer(s). .

L4.2 6,7 2.3 20

4 6 3 20

Instances arise however, where instead of just rounding up or rounding
down, it would be preferable to round to the closest ‘integer, which
neither the <ceiling nor the floor functions do.  For Instance, when
rounding a number such as 4.2 to Its closest Iinteger, the L function
could be  wused to return a result of 4. But what about a number like
6.7?7 We can not do both of these operations by using the same func~
tion, That 'is, we cannot wunless we add .5 to the argument first.
Here is the operation performed without the .5 being added:

6.7 4.2
6.7 4.2
7 5 )
and here is the floor function again, but with the .5 added fifst:
_ L.546.7 4.2
7 4
and the ceiling function with the .5 subtracted first:

r6¢7 “"0.2-.5

7 4
It appears, that by either adding or subtracting the .5 and using the
appropriate function, the same results can be obtained. Not quite
however. If one of the arqguments' values happens to end in .5
already, the results will be different.

L10.5+.5
11

f10.5-.5
10

Therefore, depending on whether we want the ".5" values rounded up or
down, dictates the method we choose.



Practice Exercises

1.

Using the MCM/70, evaluate the following:

(a) 3 6+2 (b) 4 7+10 12
(¢) 82 5-413 ‘ (d) 2 3+10x4 5
(e) sL3 u 56 7 (f) 2 3x2

(g) 2 3%x3 2 (h) 2x0 1 2 3 4
(1) =xe10 | | (j) T10%.3

(k) 20512 (1) 3 ues1 1024
(m) x7.01 50 | (n) ~.s6l".57
(o) (3+42)r4 (p) 6E34L6E35
(q) s6l25%.5 (r) (2x3)[ (3%2)

Write APL expressions equivalent to the following:

(a) 3? (b) 3%+ 2°
(c) 2 (d) \/25
(e) x%+ ¥° (f) 3x°+2x-1

Find the squares, cubes and fourth powers of the numbers 4 and 5.
Find the square, cube and fourth roots of the numbers 4 and 5.
What are the natural logarithms of the numbers 2, 10, and 27.57
What are the logarithms of 27 and 243 to the base 37

One store s selling oranges at "2 for 13 cents'" and another at

69 cents a dozen.'" Which Is the better buy and what would the
difference in price be if you bought 2 dozen?




Chapter §5: MORE SCALAR FUNCTIONS

This chapter introduces a few more functions associated with algebra,
plus a set pertaining to trigonometry, The algebra functions cal-
culate the remainders of division operations, absolute values, factor-
lals and combinations; and the trigonometric ones deal with sines, co-
sines, tangents, etc. One more function Included here Is the monadic
random, or, as It is often called, the roll function. it does not
fall Into either one of these two categories, but Its output may pro-
vide good input to others.

Residue

The residue function, employing the symbol | (upper shift M), does
Just what its name implies. It produces the residue or remainder left
after one number s divided by another. For Instance, 8 divided by
3 leaves a remainder of 2,

3|8
2

Notice the divisor Is the left argument and the dividend Is the right.

417 8 9 10
3 0 1 2

2.6 3.2(6.7
1.5 .3

|f we have to determine what the nonintegral! part of a number Is, this
function can be used In the following manner:

1110.5 6.234
.5  .234 -

If the left argument is negative, so too Is the result.



But f the left argument Is positive and the right argument Is nega-
tive the result is quite different. : :

4711
1

What happens here is that the 4 |s added to the 11 as many times as
is required to make the result a positive value. And It is this value
that gets printed. Above, the 4 I|s added to "11 to give an Initial
result of “7. This ~7 Is then increased by 4 to give ~3. But still
the result is negative. So the 4 |s again added to the ~3 to give the
final result of 1. .

Absolute Value

Monadically, the | function is used to produce the absolute value of
its argument. :

Conventional mathematics places a vertical bar on both sides of its
argument in the form |X|. But APL eliminates the right bar to make it
more consistent with the rest of the notatlon.

Factorial

In how many different ways can you arrange 4 [tems? The answer iIs
24 different ways. It is determined by the mathematical equation 4!
which means " 4 times 3 times 2 times 1." In APL, the equation is
‘4 with the factorial function symbol !, being a combination of ' (up-
per shift X) and the period or decimal point.




24

!5
120

'6 3
720 6

Knowing how to use the factorial function means we can also do permu-
tations. When calculating the number of permutations of 'n" different
things, taking "r" at a time, without repetition, we use the formula

n

t
which could also be expressed as
(n!)+(n-r)!
The APL equivalent to this Is
| (IN)+IN-R
If we were given the problem of finding out how many 6 letter words

could be formed from the letters of the word “"computer'', we would
solve It in the following manner:

5 N+8 (there are 8 letters In the word "computer',)
R«6

B
('N)#+!N-R

20160

Obviously most of these 20160 "words' are not part of the English
language as we know It though.



Combinations

Now that we have found out how permutations are handled, the next step
Is calculating combinations. The fundamental difference between a
permutation and a combination 1Is that, in a permutation, order is
taken into account, while in a combination, it Is not. The equation
used for calculating the number of combinations of ways In which ob-
jects can be selected from a group, without regard to their order Is:

7

n!

which ¢could be written in APL as:
('N)+('R)x'N-R

But, by employing the ! function dyadically, the same'statément can be
expressed as . ,

RN
For 'instance, to solve the problem, '""how many ways can 2 marbles be
selected from a population of 67", the algorithm would look like this:
216

and the answer would be 15.
Here are both expressions used:

(16)s(!2)x16-2
15 :

2!6
15

Clearly, the second method takes muqh‘less of the computer's time to
evaluate than the first.




Trigqonometric Functions

The upper shift O symbol

o0 has some interesting characteristics. |In

its dyadic form, the large circular symbol performs various trigono-
metric functions, depending on the value of its left argument. Here
is a table of all the trigonometric operations that are possible with

this symbol:

Function

Meaning

704 hyperbolic tangent of 4 (tanh A4)
604 hyperbolic cosine of 4 (cosh 4)
504 hyperbolic sine of A4 (sinh 4)
4OA (1+A%2)* .5 :
304 tangent A4
204 cosine 4
104 sine 4
004 (1-A%2)=.5
“104 arcsin A
T204 arccos 4
T304 ~arctan 4
“uod (T1+A4%2)%.5
T504 arcsinh 4
604 arccosh 4
704 arctanh 4
For all the trigonometric functions, A4 is expressed in radians and the

left argument Is an Integer between 7 and “7,

What is the sine of 3 radians?

103

014112

Show that sing + cos’9 = 1 (give § the value 2 radians)

(((102)*2)+(202)%2)



Pi Times

When used monadically, in the form 04, the expression means "Pi times
A", (Pl meaning = or 3.14159...) ‘

01
3.1416

Although this function expects Its right argument to be expressed in
terms of radians, most applications which wuse It deal 1in degrees.
Therefore ‘the conversion equations for degrees to radians and vice
versa become constant necessities. With the Information we know  now
about APL, we should be able to do these conversions ourselves If
'given the conversion formulae. The one for changing degrees to
radians is: o § ‘ :

1 radian = 180 degrees
Pi
To find the number of radians in 30 degrees, the solution could be
expressed in APL as:

(30x01)+180
+5236

or just

 030%180
.5236

See if you can convert a radian value to its deqree equivalent.

Monadic Rahddm~(Roll) "

The monadic random, or roll function ? (upper shift Q) differs some-
what. from all the other scalar functions we have seen so far. For
instance, here it 1is being executed three times, each time with the
same argument, but the results !t produces are all different.

[

[SR——



?6

3
?6
?6
1

Can you guess what Its function Is? |If you think Its a number series
generator, you are wrong. Its purpose Is to generate numbers alright,
but in a totally random sequence. The above three examples asked the
system to select an Integer between 1 and 6. In this particular case,
the 6 could represent the six different sides of a die, and the roll
function could be thought of as the simulation of the rolling of this
die to see which side comes up. This logically leads us to a dice
game involving two dice. All we have to do to get this Is to type an-
other 6 into the argument.

76 6
2 6

76 6
5 5

76 6
3 4

and so on,

Practice Exercises

1. Using the MCM/70, evaluate the following:

(a) 218 | (b) 2.718.6
(¢) 177 26.2 0 (d) 2177
(e) tu | (f) 13 21
(g) 3!9 87 (h) o1 2 3



(1) 1000 .5 1 1.5 (J) 72 T101
(k) 710 (1) 77100
Three hundred and thirty-seven apples were picked froh a tree and

sorted into dozen quantities. How many apples were left over?

Using the formulae
Circumference = 7R
2

Area = 7R

find the circumference and area of a circle having a radius of 3
inches.

Prove the following:
sin230%°+ cos?230"=
sin 60° cos 30°+ cos 60" sin 30° = 1

tan 180°- tan 120° -t .6&
1 + tan 180° tan 120° an

What is the APL expression to find the cosecant of .5 radians,
knowing that the cosecant Is the inverse of sine.

‘Use the monadic random function to simulate the flipping of a

coin.S times,




Chapter 6: RELATIONAL AND LOGICAL FUNCTIONS

There are two sets of scalar functions that deal in relational and
logical comparisons of data. They are used to answer such questions

as, '"is A greater than B?" and '"are both of these values -equal to
zero?". |In every case, their responses are of a ''yes-no' nature. For
example, the two questions above could be answered with “"yes, A Is
greater than B' and ''no, they are not both equal to zero'. Because

the data being compared Is typically numeric, It is only fitting that
the results be numeric also. Therefore the system has denoted the
value 1 to represent a '"yes'" or ""true'" condition and 0 as meaning '‘no"
or "“false', '

Relational Functions

Within the APL system there are six symbols used to denote the rela-
tional functions. These six symbols are < < = 2 > #, They occupy the
upper shift positions on the keys 3 through 8., They are used to com-
pare the value of the left argument to that of the right. The varfous
comparisons that can be performed are as follows:

Function Meaning
X<Y X less than Y
X<Y X less than or equal to Y
“X=Y X equal to Y
XzY X greater than or equal to Y
X>Y X greater than Y
X=Y X not equal to Y

Here are a_few examples of all qf them.

3>4
0

3<l
1‘

3=4 3
0 1

3=4 3
1 0 :



0 1 1
2,652.6 2.7 2.5
1 1 0
The only two scalar functions that allow literals as arguments are the
= and =,
' '6'='567"
0 1 o0
- 'A':'ABC'
o 1 1
lM'>'N|
DOMAIN ERROR
IM'>'N'

Logical Functions

The logical functions in APL are the following:

Function Meaning
XvY X or Y
XAY X and Y
X»Y neither X nor Y
XnY not both X and Y
~Y not Y

If you are familiar with Boolean algebra, you will probably recognize
the uses of these functions right away. Thelr results are 1's and 0's
just like those of the relational functions, but their arguments must
be 1's and 0's also.




Or

The or function determines If at least one of its arguments is equal
to 1.

ovi
1

If it is, the computer will return a 1 response.
1vo0
ivi

1

If both arguments are 0, the response is zero.

ovo
0

In the case of vector arguments, the corresponding pairs are scanned
for ones.

0 1vl1 O
1 1

ovli 0 1
1 0 1
And

The and function expects both of Its corresponding arguments to be
equal to 1 before it returns a 1 result.

1A0



il

0 1a1 1

Nor

The nor function produces the opposute result to that of or. |

t is
created by overstriking the v and the tilde symbol ~ (upper shift 7 )

i»0

0~0
1

Both of the corresponding elements in its arguments must be equal to
0 before it will return a 1 result.

0 i1»1 ©
0 .0
o»1 0 1
0 1 o0
Nand
The nand function is the inverse of the and. It is produced by over-

striking the A and the ~ symbols.

11




It states that both corresponding values in both arguments must not be
equal to one in order for it to return a 1 response.

O~0
1

1%1 0 1
0o 1 0
Not

The one scalar function that may .only be used monadically is the not
function. '

~1
0
~0
1
~0 10
1 0 1
It produces the logical negation of its argument. |If its argument Is

a1, the result Is a 0, and vice versa.



Sumharx
This completes the roster of scalar functions existing In the MCM/70.
Just to recap what they are, here Is a brief summary containing the

symbols each s represented by, and the responsibility each one as-
sumes : '

Scalar Monadic Scalar Dyadic

Function Meaning : ~ Function Meaning
+Y Y X+Y X plus
-Y S 0-Y ' X-Y X minus Y
xY Signum Y XxY X times Y
Y Reciprocal of Y X:Y X divided by Y
*Y e to the Yth power XxY X to the Yth power
ry Ceiling of Y xry Maximum of X and Y
LY Floor :of Y XLY Minimum of X and Y
Y Absolute value of Y XY X-residue of Y
ey Natural logarithm of ¥ XeY Base~X logarithm of Y
'Y Factorial Y X'y Binomial coefficient: Y
: N taken X at a time
oY Pi times Y o Xoy Trigonometric functions
2Y A random number from 1 X<Y X less than Y
to Y XsY X less than or equal to
~Y Not Y X=Y X equal to Y
X2y X greater than or equal
X>Y X greater than Y
X=Y X not equal Y
XvY X or Y
XAaY X and Y
X»Y Neither X nor Y
Xny Not both X and ¥ (X nand

We have not seen the last of these scalar functions yet. The next
chapter, and others show additional ways In which they can be em-

ployed. But,  throughout It all, their prescribed tasks remain the
same.

b4

to Y

Y)




Practice Exercises

1. Using the MCM/70, evaluate the following:

(a) 1m1 (b) 1a1 0 1 1
(c) ovio0 11 (d) 1v~1
(e) ~111 (F) 1 om0 1
2. Write an APL expression for each of the following:

assign A the value 0.

values which equal 3 back to zero, and
values as they are.

(a) Assign A the value 8 if B s greatéf than C, othefkise,

(b) Assuming X represents a vector of values, reset all



Chapter 7: REDUCTION AND SCAN

When we first started performlng calculations with the MCM/?O we used
scalars as arguments.

3+4
.

Then .we saw the computer could also handle series of numbers as well,
which greatly facllitated many of our computing tasks. When we wanted
to multlply a group of numbers by 100, we did so by one simple op-
eration. ' » :

100%x6 7 8 5 4 \
600 700 BOO 500 400

We found also that .both arguments could be vectors, and the same
functions that worked with scalars could be extended to perform the
same way with vectors, by treating the corresponding pairs of elements
of each vector as a set of scalars.

6 4 347 2 8
13 6 11

Again our ability to solve more problems was Increased. The only area
we have not yet addressed Is performing calculations on the individual
components within an array. An example Is the summing of the elements
contained in the right argument of this last example above. We. can
mentally calculate the sum of 7 2 8 as belng 16, but how do we express
this in APL? This chapter shows us how. It alsoﬁlf]ustrates how to
perform "cumulative summing'" on arrays. The two functions used to
carry out these tasks are called reduction and scan respectively.

Reduction

Our above problem of summing the values 7 2 8 has two solutions. We
could insert plus signs between each of the numbers in the form 7+2+8




or we could use the reduction function to arrive at the same answer.

+/7 2 8
17

A reduction function Is denoted by the solidus or slash symbol / lo-
cated in the lower right-hand corner of the keyboard. Together with
the plus sign, the above expression is read as '"plus reduce 7 2 8" or

"Y"plus over 7 2 8%,

Here are two more examples:

+/1 2 3 4 5 6
21

+/100 1000 10000
11100

Averaging

With the aid of the plus reduction function, we can now calculate the
average of a set of values. Averaging is simply a matter of finding
the total of a group of numbers and dividing it by the sum of numbers
involved. The vector 7 2 8 has three numbers In It. Therefore, the
averaging statement s

(+/7 2 8)33

Imagine these numbers represented In-stock (inventory litems. This
means the average stock on hand is

(+/7 2 8)23
5.6667

jtems.

We are able to divide by 3 because we know the vector contains three
elements. But what if we do not know the number of elements? There
is an APL function which we will cover later on which will tell us
this. To improvize in the mean-time, let us develop a method of get-
ting around this.

~J
N



We know that if we perform the comparison equal on two arguments, the
result consists of 1's and 0's to indicate "'yes' and 'no" replies.

3 2 6=4 2 5
0 1 O

| f we compare a vector of numbers to itself, we would receive all ones
in the reply.,

1 1 1

Notice there are three 1's equalling the length of either argument.
If we were to add up these ones, what would you get?

+/1 1 1
3

Did you hear a bell just ring?

If we now apply what we have developed to our average statement, we
will arrive at the correct answer, :

(+/7 2 8)+(+/7 2 827 2 8)
5.6667

And we do.

This principal frees us from having to know the length of the vector
argument before we try to average |t.

A«4 2 3 9 5 7

(+/4)+(+/A=4)




Times Reduction

The function performed by the reduction

is determined by the accomp-

anying scalar primitive. Here is an example of finding the product of

a set of numbers:

x/7 2 8
112

Here is another:

A<1 2 3 4 5 6 7 8 9 10

x/A
3628800

Order of Execution

Like all calculations in APL, the order
functions is from right to left. |In the
is not too apparent because evaluations
sults.

+/6 7 89
30

The above statement was evaluated in the

step 1: 6 + 7 I 8 + 9
step 2: 7 + 17
| ——
step 3: 6 + 24
N—er—
resul t: 30

But when

of execution of the reduction
cases of plus and times, this
elither way yield the same re-

following manner:

the operation is a subtraction or division, the sequence In

which the numbers are taken has a deflnite affect on the result. The
following function is a good illustration of this:



-/6 7 8 9

2
The way its answer was arrived at was by the following steps:

step 1: 6 -

b
step 2: 7 - "1
[ —
step 3: 6 - 8
[ ——
result: T2

Reductions can be done with all the scalar dyadic functions.

Function _ Function

Symbol Name Symbol Name
+ plus < less than
- minus < less than or equal to
x ‘times = equal to
$ divide 2 greater than or equal to
* power > greater than
® logarithm 2 not equal
r maximum v or
L minimum A and .
[ res idue » nor

P binomial coefficient n nand

o) circular

Here are examples of some of the other scalar primitives being
employed with the reduction function: =

/72 "6 4 0

n
L/2 T 4 0

6

*/3 2 1
[¢] .

v/1 0 0
1

A/1 0 O
0

- +/12 "6 "4 3 6

16 :




Scan

The scan function looks very similar to the reduction function., - They
both work with only scalar dyadic primitives, and they both are de-
noted by the slash symbol. The only difference In appearance is the
scan uses the reverse slash.

Reduction Syntax Scan Syntax
f/A f\A
In spite of the fact that they look alike, they perform quite differ=~
ently from one another. While the reduction function ‘''reduces'" its
argument to a single total, or product, or what have you, the scan
function produces a 'cumulative'! total or product, etc.

10 9 7 &

It works from the right of its argument to the left. This last
example was evaluated by the following procedure:

1. The last value of 4 In the result is the last value In the
argument.

2. The 4 and the 3 in the argument are added together to pro-
duce the 7 in the result,

3. The 4, the 3 and the 2 in the argument are added together to
produce the 9 in the result.

L, Then the entire argument is summed to arrive at the 10 in
the result. :

Each of these steps implies the use of the plus reduction function.

step 1: +/u4 or 4
step 2: +/3 4 or 7
step 3: +/2 3 4 or 9

step 4: +/1 2 3 4 or 10



Here is another example:

x\5 2 4 3

120 24 12
And here 1Is
step
step
step

step

3

how it was evaluated:

1:

22

3:

b

The following
primitives with this function:

f\1 2
5.5 5 5

L\N1 2
1 2 3 L

®\3 2
2 9 512

3
5

ow

51

x/3 or 3
}

x/4 3 or 12

x/2 4 3 or 2y

x/5 2 4 3 or 120

are a few more

4 5

2

Practice Exercises

illustrations

1. Employ the MCM/70 to evaluate the following:

(a)
(c)
(e)
(g)

+/3 6 7 2

+/720 10.2 6
+\3 6 7 2

+\"20 10.2 6

(b)
(d)
(f)
(h)

-/36 7 2
x/720 10.2 6
-\3 6 7 2

x\"20 10.2 6

involving other scalar




Each weekend for five weekends, a boy goes out collecting dis-
carded pop bottles. His findings each week are 32, 45, 27, 36,
and 24 bottles. How many did he collect altogether? |If they are
worth 2 cents each, how much money did he earn?

A climber is ascending a mountain. |f he can cover enough ground
each day, equivalent to the vertical gains of 9200, 7100, 5900,
3600, and 2100 vyards, how high up is the mountain peak? What
will be his total vertical elevation at the end of each day?
(hint: Reverse the order of his yardage gains.)

How many dollars and cents are there in 6 quarters, 35

nickels, and 57 pennies?

For ~ the following series of numbers, write the APL expression to
find:

(a) the largest value
(b) the smallest value
(c) the difference between the largest and the smallest

(d) the aQerage value

A+7 T2 6.3 13 0 ~.1 4 9 1



Chapter 8: DEFINED FUNCTIONS

There are approximately eighty ‘'‘primitive!" functions In MCM/APL.
Forty-eight of these were described in the last few chapters. These
functions each perform unique tasks and most of them are able to ac-
comodate arguments of varyling shapes and sizes. But, like most com-
puters, there is a limit to just how much can be “"pre-programmed' Into
it. This restriction is Imposed by the physical <constraints of the
unit itself. Even so, the MCM/70 has considerably more pre-programmed
routines In It than any other computer Its size. But because the con-
straint’ is present, MCM/APL has been designed In such a way to enable
you to get around it by allowing you to create your own functions
which you may need for your particular applications.

Apart from having its own repertoire of functions, It is still able to
accept others. Remember In Chapter 1| we mentioned there were two dif-
ferent modes of operation for the MCM/70? One is called execution

mode and the other Is called definition mode. Well, it Is by usling

the MCM/70 in definition mode that we are able to extend Its capabili-
ties.

So far we have been utilizing the computer In execution mode only, em-
ploylng several of the primitives available. Each time we entered an
expression It was Immediately evaluated by the computer and the result
was displayed on the screen. Thls meant anything entered that could
be successfully computed was done so and anything that could not was
rejected with an appropriate error message. This type of environment
Is fine for «calculations that are done on a "one-time" basis only.
But In cases where the same routines will be used more than once, they
should be stored in the computer's memory so that they do not have to
be re-entered from the key board each time they are used. We defined
variables for wvery much the same reason. It saves time and reduces
the possibility of typing errors. But when writing our own user de-
fined functions, unlike storing variables, the mode of the system has
to be changed in order for it to accept them. Here Is a simple pro-
blem for which we will define a function to solve:

After taking the attendance readings in a school classroom
over a two week period, we would like to determine the fol-
lowing: o

1: the average attendance,

2: the highest attendance reading, and

3: the lowest reading.




Our record attendance levels were the following:

Mon. Tues. Wed, Thurs. Fri. Mon. Tues. Wed. Thurs. Fri.

23 25 24 26 28 23 27 28 27 26

In- order to carry out the calculations with a minimal amount of typ-
Ing, let us assign these numbers to a variable.

X<23 25 24 26 28 23 27 28 27 26

Now the first thing we want to find Is the average attendance. To do
this, we must first add up all the values and then divide by the num-
ber of attendance readings taken. But [If we did not know that number,
one quick way to find out is with the following statement:

+/X=X
10

Obviously X equals itself, so the result of X=X is ten 1's. And the
plus reduction of these ten ones yields a result of 10, This little
trick was covered in Chapter 7. Here Is the count calculated again,
but this time the result is assigned to the variable N:

Net+/X=X

10
And to find the average of X, the following is typed:

(+/X):N
25.7

Now that we have determined the average attendance, the next step is
to find the highest attendance reading. By using the maximum symbol
in conjunction with the reduction symbol this task can be carried out
in the following way:

r/7x
28

And the lowest reading can be obtained just as easily.

L/x
23



Now that we know the APL expression required to solve our problems,
let us define a function that will automatically do them -for us.

A

Function Definition Mode

The first thing we have to do when defining a function Is to change
the mode of the computer. Above the letter G on the keyboard, there
is a symbol called del (V) which Is used to change the system from
execution mode to definTtion mode and vice versa. To get the system
into definition mode, we key in the del followed by the name of the

function being defined. Let us call this one ATTEND.

VATTEND

(118

Notice the system responds with [1]. This signifies it is in defini-

tion mode and ready to accept the first line of the function. In our
case It is N<«+/X=X to count up how many attendance readings were
taken.

[1]N«+/X=X

[2].

After entering this statement and pressing the RETURN key, the system
responds with [2], asking for the next line, We reply with
(+/X):N which is the expression to find the average attendance.

C1INe+/X=X
[(2]1(+/X)+N

(318

The system continues tp accept our statements, a line at a time.

[3lr/x
Culdl/x

] |




When all our algorithms have been entered, we signal this to the com-
puter by entering another del.

[31F/x
Cull/X
[51v

This causes the computer to switch from definition mode back to execu-
tion mode. MNotice only the cursor appears on the screen after the del
has been typed and the RETURMN key pressed.

Just to make sure we are in fact in execution mode, try a simple
calculation like the one below.

242
y

Now that our function ATTEND has been defined and stored in the com-
puter's memory, [t can be executed at any time during the session by
simply typing in fts name.

ATTEND
25,7

The first 1line displayed by the computer is 25.7, representing the
average for the set of values contained in X. There are two columns
of illuminated dots at the extreme right end of the screen. They are
to let you know that ATTEND has not yet finished executing all of its

statements., At this point, it Is through with line 2 and ready to

execute line 3. It Is just waiting for you to press the RETURN key,

signalling It to «continue with its calculations. This rectangle of
illuminated dots appears every time output Is displayed while the sys-
tem is still executing a user defined function. To facilitate illus-

trating the displayed output of ATTEND, assume the RETURN key has been
pressed so the output can appear immediately, one after the other.
Here are the rest of the results.

28
23

These two figures represent the highest and the lowest attendance
readings respectively.

Once a function has been defined, you do not have to do it again,
assuming of course the unit is not shut off without first saving the
function on a tape cassette. This means ATTEND can be used at any
time, with any values in X.



X<6 26 2.5 7.2

ATTEND
9.175
26
~2.5

X«1 2 3456 7 8 9 10

ATTEND
5.5
10
1

DISpléying a Function

I f, Aé; any time, we wish to view any or all of the lines in a defined
function, we simply go back into definition mode again by typing the
deluand_the name of the function we wish to display.

“VATTEND

(51N

Notice - the system displays the line number which is one gfeater than
" the number of lines the function contains. It Is assuming we’wish to
add more  statements to It. To get it to display one of its existing
lines, we have to redirect it to the appropriate statement by -keying
In. the ¥statementTs line number (in brackets). Below, the system Is
requested to display line 1.

' 3
o ‘VATTEND '
(s1C1]
Upon préssing the RETURN key, the computer responds with
C1@e+/x=x ‘
and it places the cursor over the N, thinking we are going to thénée

something on this line. (We will discuss how function statements are
edited in a few more paaqges).




By pressing the RETURN key only, line 2 will be displayed and, by
repeating this process, we get to see all the lines in the function,
which look like this:

(1LIN++/X=X
[27C+/X) N
[31r/x
(ellL/X

Once at line 5 we can either close the function by typing In the del
again or go back to some other line, or even add more lines. We can
even redirect the computer to display a different line while it still
has more lines to display by typing in [L], where L is the line number
we wish, We can also close a function in the middle of its line dis~-
play, just as long as the del is either the very first or very last
character entered on the line.

Function Editing

Functions usually undergo several changes before a satisfactory ver-
sion is obtained. This could be due to many reasons. We may just
want to add more lines, modify existing ones, or even delete some that
are no longer needed. But whatever the reason, It is best to know the
four basic changes that can be made to an existing defined function to
modify its structure and/or contents. These are:

1) add one or more lines into the function;

2) insert one or more lines between those
already existing within the function;

3) modify the contents of existing lines;

k) erase or drop lines from the function.



Line Addition

In our example of evaluating classroom attendance, we found the aver-
age, the highest, and the lowest recordings registered. HNow that we
have found these statistics, let us also find the range between the
highest and the lowest. To do this we have only to subtract the high
reading from the low in the following manner:

(r/x)y-1/x

To add this 'expression to ATTEND, we simply go back into definition
mode ' '

VATTEND

(s1H

and type

it in.,

CsI(r/7x)-L/x
(61]V

Now when ATTEND is executed, the following results are produced:

ATTEND
5.5 : averaqe
10 highest value
1 lowest value
9 range -

The reason the values produced by ATTEND look so different from those

of our class attendance statistics, Is that we redefined ¥ with the
values 1 to 10, and have not changed It since. :

Line Insertion

Notice that each line of a function is an Integral value beginning at
1 and numbering up to the last line of the function. If we wish to
insert an additional statement between lines 3 and L, we would give
this new statement a line number of 3.5 or 3.01 or even 3.99, just as
long as It was greater than 3 but less than 4. (The 1imit on any line
number s 127.99). In our function ATTEND, let us insert a line to




display the contents of X everytime ATTEND Is executed. Below, ATTEND
is opened up again and redirected to line number .5.

VATTEND
(61(.5]

[.518

This |is the line number we have chosen to place our statement in to
display the values in X. Because .5 Is smaller than 1, the contents
of this new statement will be the first ones evaluated whenever ATTEND
is executed. ' '

VATTEND
[6][.5]

[.51Xx

[.6]V

Notice that, after the new statement is entered, the line counter is
incremented by .1. The system assumes we are going to add more than
one line. But this time we are not, so we terminate definition. Now
if ATTEND is executed, we would get the following results:

ATTEND
1 2 3 4 5 6 7 8 9 10
5.5
10
1
g

And If ATTEND is displayed, it would look like this:

f11x
[2]1N<+/X=X
[31(+/X)+N
Lall/x
[51L/X%
[63(l/X)-L/X

Notice the line numbers have been renumbered. The line that was en-
tered as [.5] is now line 1 and all the other line numbers have been
incremented by one. This Is done automatically by the system as soon
as the function is closed.



Line Modification

Lines 2 and 3 are used to find the average attendance. Line 2 deter=~
mines the number of attendance recordings and line 3 uses this figure
to complete the averaging calculation. The whole process could have
been done in one line, which would mean the overall execution time
would be decreased and the variable N would not have to be defined.

The expression would look like this:
(+/X)s+/X=X

In order to incorporate this new expression Into ATTEND, either line 2
or line 3 would have to be modified. The obvious choice would be line
3 since the first part of the expression is already there and besides,
this is the line that displays the result, assuming of course we only

want the average displayed once.

The procedure for modifying an existing function line Is very much the
same as that for Inserting a new line. First we have to open the

function,

VATTEND

(718

and then redirect it to the appropriate line.

VATTEND
(71033

After pressing the RETURN key, notice the contents of line 3 are dis-~-
played with the cursor being placed over the first character.

[3XW+/x)3N

All we have to do now s space over to the N and replace it with
+/X=X to change the statement to

[31(+/Xx)s+/x=X]R

We can either press the RETURN key now and close the function on line
b by typing the del or we could just type In the del as the last char-
acter of line 3. Both achieve the same results, It's just that the
latter is quicker,

[3](+/X)s+4/X=XV

YT

s T




And now we are back In execution mode. Just to make sure ATTEND still
works, here it is again:

ATTEND
123 4586 7 89 10
5.5
10
1
9

Upon diSpiaying the function, we see that it now looks like this:

[11x
[(2IV«+/X=X
[31(+/X)++/X=X
Cull/x

(slL/Xx :
[el(T/x)-L/X

The new contents of ATTEND now make line 2 an unnecessary ltem which
Is serving no other purpose other than consuming wusable space In
memory. This means we can get rid of It, which leads us nicely into
how existing lines are dropped from functlions.

Line Meletion

Both deletion and modification of lines In a defined function are per=
formed the same way as deletion and modification of statements entered
while 1In execution mode. For instance, to delete line 2 from ATTEND,
simply open ATTEND,

VATTEUD
(718
redirect it back to the line td_be erased,
C7102]1

pfess‘the RETURN key, and when it disblays the contents of that line,

(2M«+/X=X



hold the CTRL key down and press the BKSP key to delete all the char-
acters, '

21 W
then type in the del
[(2]v

and press the RETURN key. After this Is done and the function is dis-
played, you will see it looks like this:

(11X

S [21C+/ X)) 3+ /X=X
[31r/x

(ull/x
(s1I/x)-L/7x

Notice again the lines have been renumbered into a consecutive se-
quence. And upon executing ATTEND,

ATTEND
2 3 4 5 6 7 8 9 10
5.5
10
1
9

it still returns the same results,

There is another way to delete entire lines of functions which is much
quicker than the method just described. Instead of manually erasing
every character in a line, we can simply press the CTRL key and then
the SHIFT and <« keys at the first available position of the line to be
deleted and press the RETURN key. Assume the contents of the 'old"
line 2 was still present in ATTEND. To erase It using this second
technique, you would follow these steps:

1. Go back into function definition mode with ATTEND.

VATTEND
(718

2. Redirect the system back to line 2

VATTEND
(71021

4 ~



I f

and press the RETURN key,

3. After the system has displayed the contents of
line 2 and placed the cursor over the letter W,

(20+/X=X

press the CTRL key and then the SHIFT and <+ keys.
L, The system will then display line 3. (Thls re-

sponse is different from the one given by the

other method.) Type In the del to end function

definition mode

[31/X)s+/X=X

and press the RETURN key,

we now display ATTEND, we will see that the contents of the 'old"

line 2 has been erased and the remaining lines have been renumbered,
just as they were after the other line deletion method was employed.

Pracgice Exercises

What are the two modes of operation in which the MCM/70 can
function?

How can you switch from one mode to the other?

After each line of a function is entered and the RETURN key 1is
pressed, what Is the computer's response?

The formula for finding the length of the hypotenuse of a right-
angled triangle is:

Cc= Qa2+ b2 '



where the triangle is df the following shape:

a

Given that a is 3 inches long and b Is 4 inches lpng define a
function called HYP that will calculate the length of c.

Key this function into the MCM/70:

VSTATS -

(1]1'NUMBER OF OBSERVATIONS:'
[2]+/Xx=X

[3])'LARGEST VALUE:'

Cull /X .
[5]'"SMALLEST VALUE:'

(6llL/X '

v

(a) Assign X ten numbers at random.
(b) Execute the function. : .
(c) Add these two statements to the function:

[7]1'RANGE ;!
(8l(r/x)-1L/x

(d) Close the function and execute it again.

(e) Insert these two lihesrbetween,the existing line numbers 2
and 3: ' ,

[2.11'OBSERVATIONS ARE:'
[2.2]x

(f) Close the function and reeexgcufe it.
(g) Delete lines 5 and 6.

(h) Close the function and re-ekechte it.




(1) Insert two lines 1in their place; one to state the word
"average' and the other to find the average of X.

(j) Close the function and re-execute it.



Chapter 9: TYPES OF USER DEFINED FUNCTIONS

With what we learned in Chapter 8 on user defined functions, we can
now experiment with the various "types' that can be created. The word
types refers to the number of arguments a defined function can have.
We will see in this chapter there are three possible choices available
= no arguments, one argument or two arguments. We will also see how
some functions can be used as arguments themselves, while others can
not. This again is determined by the user as he Is defining his func~-
tion in the computer. The number of arguments a function can have and

its ability to become an argument of another function (primitive or
defined) are both contained in a part of a function known as its
header line.

Header Line

A defined function is made up of basically two parts, the body and the
header line.The body runs from line 1 to the last line of the func-
tion. The header 1line s the line which contains the name of the
function.

VATTE[]D -——— header |ine
[11(+/X)2+ /X=X
(21 /7x
(3]L/x
Cul(r/x)-L/%

body

Even though It is not assigned a line number as far as we can see, It
Is referred to by the system as line 0. This enables us to perform
editing on it If ever we choose to do so. ’

.‘)‘




Function Syntax

Apart from containlng the function's name, the header line also con-
tains the function's- syntax. The syntax dictates the rules by which a
function can be executed. Just as it does for primitive functions,
this syntax indicator tells the system: how many arguments to expect
before beginning Its execution-of a defined function. For primitive
functions the syntax indicators are a predetermined part of the sys-
tem. They state whether their respective functions are monadic or dy-
adic In use. The functions +2 and 6*2 are two examples of this.

A comparison is drawn between the_primltlves and. the defined functlons

by referring to the symbol used to represent the primitive as the name

of the primitive,

:;rlnltfve " Deflned

| ;2 o VRECIPROCAL 2
name . name
Flgure 9. l

The value 2 In each case |s considered to be an argument to the func~
tion. Therefore each function must be monadic. Not!ce the 2 1s sep-
arated from the name of the defined functlon by a space, while the
2 associated with the primitive is not. The divide symbol + cannot be
construed as being a valid variable or function name, therefore there
Is no need to separate it from Its argument.  But the defined func-
tion's name and argument must be divided from each other by at least

~one space to distinguish to the system which is the name and which is
‘the argument. If no space was provided, the header line w0uld appear

as:
VRECIPROCAL2'

lnferring the name to -be REGIPROCAL2 and that no argument ls expected.

As with primitive functions, we can also. have monadlc and dyad!c user

defined functions. The header line of RECIPROCAL states that It Is a

monadic function. Another header line statlng the same thlng Is the

followlng.

VSORT X



The function Is called SORT and its argument s X.

functlon
name

V SORT X
argument

The name of a monadic function always preceeds its argument, Just as
the primitive function's symbol always preceeds Its argument, The
header line of a dyadic function looks like this:

V A HYP B
The name of the function is HYP and its two arguments afe A'and B,

function
name

V A HYP B

left right
argument argument

Types of Header Lines

Having seen the syntactical relationship between primitive functions

and user defined functions, you may be asking yourself, 'well then,
what kind of function is ATTEND?" Granted it does not have any argu-
ments and yet It can still be executed. The reason why lies n the
need for functions of this type. We will encounter functions later
that require no imput 1Iin order to perform their required tasks.
Drills and descriptive type functions fall Into this category.  Func-
tions expecting no arguments are called niladic. This Is the third
and last type of header line a defined functlon can have. Just to re-
view them again, they are:

“niladic - no arguments
monadic - one argument
dyadic -~ two arguments

e

J’/
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Here is a table of all the different types of defined functlions that
can be written: .

Niladic Monadic Dyadic

No Explicit Result | VATTEND | VSORT X ' VA HYP B
Explicit Result VR«ROLL YR<SQRT N VC«A RND B
~ Figure 9.2: User Defined Function Types

Ignoring any distinctions between 'no explicit result' and "explicit
result" for the moment, let us concentrate on the functions mentioned

“in the table above.

Suppose for the time being that all';he functions listed above have
already been defined In the workspace. Some of them contain primi-

_ tives that are not discussed until later In the book, but the primary

objective right now is to understand all the different kinds of func-
tions that <can be created. So please ignore for now any unknown
primitives that appear in them but when you do learn about them later
on, return to these pages and see how they are used.

Niladics

One function that does not contain any new primitives Is our old
friend ATTEND. :

VATTEND

[2](+/X)++/X=X
(3)r/x :
[4ll/x
[s)(r/x)-L/x

v .

It is prétty straight forward and needs no further discussion, other
than to note that It needs no argument in order to be executed.



Monadics
The function SORT holds something new for us though.

VSOkT
[11X042]
v

As its name Implies, it Is a monadic function that sorts numbers. And
since It Is monadic, It expects a right argument. If one 1Is not
supplied, here Is what happens:

SORT
SYNTAX ERROR
Borr

This 1Is the same type of response we would get If we tried to execute
any of the primitive functions in the same manner.

+
SYNTAX ERROR

Therefore SORT must always be accompanied by a right argument.

_ SORT 2 6 3 1 "4
4 1 2 3 &6

Displaying Its argument 1In ascending sequence, SORT can accept ény
vector of numbers, whether they are in the form above or In a prede-
fined variable. ' ' '

A+100 2 6.6 33 10 7

SORT A
10 2 6.6 7 33 100




Dzadics

The function HYP is defined as being dyadic. Upon displaying fts con=
tents we can see [t is used to find the length of the hypotenuse of a
right-angled triangle, using the formula ¢ =Va®+ b? ,

VA HYP B |
[11((A%x2)+B*x2)* .5
v

The two arguments A and B represent the lengths of the sides of the
same name In the triangle.

If lengths of sides a and b were 3 and 4 Inches respectively, the
length of ¢ would be determined by employing HYP in the following man-
ner:

3 HYP 4
S

We can wuse the same function to solve for two or more triangles at
once,

: 2 6 HYP 5 7
5.3852 9.2195

That takes care of the top row of functions In figure 9.2, which were
all described as being '"no explicit result' function. Each one did
produce a result though; so what does this phrase Imply? The distinc-
tion between explicit and no -explicit result producing functions s
explained 1In the next section along with examples of the uses for the
functions listed in the second row. ‘



Explicit vs, No Explicit Result Functions

The only difference between an explicit result function and a no ex-
plicit result function Is that the explicit result, at the end of Its
computations, may be wused as an argument of another user defined or
primitive function. For instance an expression such as F+6 where P is
the name of a niladic explicit result function Is a perfectly valid
statement in MCM/APL. We can easily tell an explicit result function
by the presence of the specification arrow («) In the header line.
Notice in the second row of function names in fig. 9.2 that all the
function header 1lines have this left pointing arrow In them. The
function ROLL Is a typical example of an explicit result, niladic
function. It selects, at random, two numbers from one to six by means
of the primitive function.
/

VR+ROLL

[1]R+?6 &

v

Here is how it works:

ROLL
3 4

ROLL
1 1 :

The purpose of ROLL is to simulate the rolling of two dice.
ROLL
ROLL
3 2
!f we wanted to add up the result of the 2 random numbers generated to
get their total count, we would simply place a +/ before the name

ROLL,

+/ROLL
9

+/ROLL




+/ROLL
y : g

Notice we can wuse ROLL as If It were a variable argument for some
other operation, namely the +/ function. This s possible because
ROLL is defined as a function which produces an explicit result. Re=-
member SORT does not produce an explicit result. Ki| It does is dis~
play 1its argument in ascending sequence. Therefore it cannot be used
as an argument to some other operation.

+/SORT 2 1 3
1 2 3
VALUE ERROR
+fisorr 2 1 3

.. In the above example the function SORT rearranged its argument into

ascending sequence and printed it out just as it did before, but, be-
cause it Is not an explicit result function, the expression caused the
value error -to occur. (The system knows SORT Is a no explicit result
function, so wupon completing its execution of SORT, It looked for a
variable of the same name, and found none.) Therefore, even
though SORT can accept an argument as Input, It Itself cannot be used
as an argument to another function. The remaining two functions to be
explained exemplify this distinction further.

The next func;ion in the table is SQRT, a monadic, explicit result
function which finds the square root(s) of its arguments.

SQRT 25
5

SQRT 4 16 64
2 4 8

(SQRT 9 36)%2
9 36

SQRT looks like this:

VZ+SQRT N
[1]Z<«W»0.5
v

The last funétion in the table, RND, rounds off the value(s) of the
right argument according to the speciflication in the left. For in-



stance, to round the value 76.826 to two significant digits, the
appropriate statement would be:

2 RND 76,826
76.83

The function either vrounds up or down to Its closest signiflcant
digit. .

1041 RND .0162 5 10.269
10.1 15 20.3

Look at the line in RND that does. the actual rounding and see If you
can determine how It works.

VC«A RND B
[1]C+(10%-A)x| 0. 5+4Bx10+4
v

The technique is really quite simple.

We can combine RND and SQRT together for computing square roots. As-
sume we are interested in only the first three decimal places of the
roots. |f the root exceeds this limit, as It does here,

SQRT 7
2,6458

we can employ REND to present the answer In the form we want.

3 RND SQRT 7
2,646

Before leaving function types, there is one more point to note. User
defined functions can be used by other defined functions In much the
same way primitives are. In the last example, we saw how one function
could be used as an argument to another. |Instead of having to key In
the names of both functions, we could have had SQRT "“call' RND auto-
matically, Let us change SQRT so that It does this. It should look
like this: .

VZ+SQRT N
[1])2«3 RND N»0.5
v

Upon executing SQRT, we see It does In fact use RND to perform the

[OVS—




perform the prescribed rounding.

SQRT 7
2.646

Functions can call any number of other functions, which In turn can
call still others. The called functions can even call the function
that did the initial calling. Or, a function can call Itself. Func-
tions of this type are known as recursive functions. Here 1Is an
example of one:

VR<FAC N
[1)+4x1¥=0
(2]zZ«NxFAC N-1
[(3]+0 '
[4]2+1

v

(The right pointing arrows, - , in lines | and 3 are known as branch
arrows, which are dlscussed in detall in Chapter 15.1

It performs the same task as the factorial primitive.

1y
24

FAC 4
24

It Invokes itself on line 2.

Summarz

You will probably do more function writing, editing and executing on
the MCM70 than anything else. Therefore It Is wise to spend a con-
siderable amount of time on these three things. Before you write a
function, you should know how you want to use it. Do you want Its re-
sult to be Input of further calculations? Do you want it to accept

. arguments? |If so, how many? A complete understanding of the header

line Is required before these questions can be answered adequately,



This chapter has shown you there are three types of functions than can
be created ~ niladic, monadic and dyadic. The type or syntax s
determined by the number of arguments the header line has. One point
that deserves mentioning while we are here Is that the names of the .
functions must adhere to the same rules as applying to variable names.
The same is also true for argument names.

When determining the type or result the function is to produce, remem-
ber a specification arrow In the header line indicates an explicit re-
sult 1is expected when the function completes its execution. The name
you chose in the header line to represent this result must be assigned
some data within the body of the function while it Is executing. In
other words, you cannot indicate to the system, that it Is to expect
data to be temporarily stored In Its memory under a certain name and
then never assign that name any data. The end result would be a
VALUE ERROR |f you tried to refer to the function's result as an argu- .
ment to some other function. The names you choose in the header line
to represent your data (both input and output) take on special charac-
teristics within the MCM/APL system. These characteristics plus
others are mentioned in this next chapter. '

Practice Exercises

1. What 1Is the maximum number of arguments a defined function can
have? What is the minimum? .

2. How many different types of defined functions are there?
3. The system refers to the’header line as line .
4. Develop a monadic, explicit result function that produces the

natural logarithm for any valid number.

5. Develop a monadic, explicit vresult function which finds the
average of any set of values. »

6. Develop a dyadic, no explicit result function to print the
perimeter and area of a rectangle. '

7. Develop a function having the header line

VIOT«UNITS TIMES COST




that takes

as

Input the Invoice listing of the number of units

sold and their unit costs, and produces the total <cost of the

invoice.



Chapter 10: - TYPES OF VARIABLES

Within MCM/APL there are two types of variables that can be defined.
One is called global and the other is called local. All the variables
we have defined to this point have been global variables. This chap-
ter explains what each type Is, the differences that exist between
them and where and when each applies.

Local vs, Global

To assist In explaining local and global varlibles, let us assume the
six functions described in Chapter 9 are still In the workspace.
Their header lines again are: :

VATTEND
VSORT X
VA HYP B
VR«<ROLL
VR«SQRT N
VC+A RND B

The only variable referred to In ATTEND is one called X,

VATTEND
[1)(+/X)+4+/X=X
(21r/x
[(3lL/x
Cul(rzx)-L/x

v

it has to be assigned values before ATTEND ‘can be executedriuccess-
fully, If It Is not, the following occurs:

VALUE ERROR
ATTL1] (+/X)++/X=]

We will get back to this X in a moment.
The next function on the list Is SORT., It also uses a variable called

X. But Its X performs two tasks at the same time. It not only helps
‘'specify the function's syntax, but it also represents the values to be

10.1




sorted whenever SORT s executéd. Just to refresh our memorles a
little, here Is the function SORT.

VSORT X
[1)xC4x]
v

And here It Is in use.
SORT 6 "2 4 7 3 1
"2 1 3 4 6 7

The only variable referred to here is X, and It appears to always take
on the values that appear to the right of SORT. But what I1f X were
‘assigned values before SORT was executed? Let us do that. We will
assign X a literal vector. : '

X«'THIS IS A TEST!'

|

If we again execute SORT, look what happens.
SORT 3 2 1

i 2 3

The function seems to have ignored the variable X containing the
literal and insteadd directed all references to X to the one in the
header line. To confirm our variable X still exists and remains un-
changed, let us display its contents,

X
THIS IS A TEST

The only conclusion we can draw from this Is that there are two X's
present; one representing the literal vector and the other represent=~
Ing the numeric vector. But If we execute the system. function ava,
which lists all the variables currently residing in memory, we see
there Is only one, ‘

ava
X :

and it represents the literal vector. We have Just seen a local vari-
able at work. By definition, a local variable becomes 'active" only
while the function, in which it resides. When the function Is
finished, it is automatically erased from the computer's memory. The
corollary to this Is that, when the local variable becomes “active',
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any global variable of the same name becomes '"inactive'' wuntil the
function employing the local variable has finished executing. At. that
time the inactive global resumes the same role it did before the func-
tion was executed, Globals are not associated with specific functlons .
as locals are. . Their sole domain is the workspace itself, even though
they can be used by functions, as X was in ATTEND. '

For a variable to be '"localized" to a particular function, it must
appear in the function's header line. |n SORT, the variable X Is 1in_
the header line. .In the function HYP there are two local variables,
A and B. Again, they serve to indicate the function's syntax plus
they assume the values supplied to the function when it Is executing.

VA HYP B -
[11((A%2)+B*2)*.5
=t
_ 3 HYP 4
g :
: (7-4) HYP (242)
5 ’ » .

This applies even when the arguments are global variables.

: S1«2

. .

. 52+5

| S1 HYP §2
5.3816

"And our global variable listing confirms it.

ava
X
51
S2

In those functions that produce explicit results, the variable used to
represent the result Is also classifled as a local variable. It too
disappears upon function completion, although the values It represents
are either displayed on the screen or passed on as an argument to an-
other function (primitive or defined). -
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SQRT 7 :
2.6458 ' (result displayed)

104+SQRT 7

12,646 (result passed on to a primitive)
2 RND SQRT 17 ' ,_

2.65 (result passed on to a defined function)
Qva

X

S1

S2

The varlable R used by GSQRT Is erased after each execution of the
function.’ ' :

Additional Local Variables

Most wuser defined functions require more than one line in order to
complete all their calculations and any lntermediate results obtained
as each- line Is executed are stored in variables for later use. But
once the function has flnished executing all fts lines, these Inter-
mediate values are no longer needed. This means, that {f . :hey are not
stored in local varifables, they will begin to clutter up. the workspace
and cut down on the area available for other calculatlans. ‘They also
tend to make it difficult to remember which variables are wuseful and
which are not. Therefore, to aid in the general housekeeplng of the
workspace, MCM/APL allows us to define several . varlables as belng lo-
cal to particular functions. This means that instead of having just
the arguments of a function automatically erased by the system when It
completes 1its computations, we can localize many more variables and
have them all disappear at the end of function ‘execution, Obviously
not all of them are needed to determine the function's syntax, so
those that are not are separated from’ those that are by means of semi-
colons, ~ For Instance, below is the header line of a dyadic, explicit
result function that has 5 local variables =~ R, A, B, EXT, and TOT.

VR<+A TIMES B;EXT;TOT
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The first three describe the function type and the remaining two
(EXT and T0T) indicate that the system willl erase them and their con-
tents from memory each time TIMES has completed its execution. Had
they not been included in the header line as illustrated, they would
have been stored in memory as global variables and remained there un-
til we requested that they specifically be erased, or untl) we termin-
ated the session, Here Is the entire function TIMES:

VR«A TIMES B;EXT;TOT
[1)EXT<«AxB

[2)T0T«+ /EXT |
[3]R«TOT+TOT%x0.07 *
v

It Is used to calculate the total amount of an invoice, given the num-
ber of goods ordered and thelir unit prices.

Here are some typical data it might use:

Quqntlty'l Unit Price

6 5.95
23 .98
16 : 1.59

9 l 2.25

Notice 1In 1line 3 of the function that a 7% sales tax |s added on -to
the total invoice price to make it more realistic. It does not matter
whether the figures indicating the quantity sold are the left or right
argument; the function excutes just the same. .

6 23 16 9 TIMES 5.95 .98 1.59 2.25
111.2051

The only place where care must be taken Iis In making sure the correg-
ponding values of the quantity and unit price columns hold the same
position within their respective arguments., Otherwise, the wrong unit
prices would be multiplied to the quantity figure, giving a completely
erroneous result.

A quick check will tell us whether any new variables were defined and
left in memory as a result of executing TIMES.

ova
X
S1
S2
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There 1Is not. In order to make both EXT and TOT global again so that
we can see the total amount before tax and the price extensions, we
would have to change the header line itself, At first glance you may
think this would be a difficult task, as there seems to be no way of
directing the system to the header line because it has no 1*ne number.
You will recall from Chapter 9 that even though one Is not displayed,
it has an assocliated line number of 0. Therefore, changing the header
line is the same as changing any other line. Here is how we would get
back to line zero.

VTIMES
[¥1C0]

"Notice that, whenever we edit any existing function, only the name of

the function has to be entered, not the entire header 1line. in re-
sponse to the command above the system would respond with '

[0J)ER«A TIMES B;EXT;TOT

" And, Jjust as we modify any other line, we would space across to the

characters we plan on changing, (in this case, to the first semi-
colon,) press and hold the CTRL key down while we repeatedly press the
BKSP key until all the necessary characters have been ~erased. Then
press the RETURN and enter the closing del to get back Into execution
mode. :

{0)VR<«A TIMES B
[(1]vi47«AxB

One point to note here Is we cannot close a function while line 0 or
the header line Is being displayed. We have to close on some other
line.

To see if our modification did work, let us execute TIMES again,

6 23 16 9 TIMES 5.95 .98 1.59 2,25
111.2051

and then display the global variable list,

ava

51
S2
EXT
0T
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we see that EXT and TOT have in fact been made global.

EXT

35,7 22.54 25.44 20,25
70T

103.93

Therefore, “by adding and deleting variable names within a function
header line, we can dictate to the system whether they are to be
treated as locals or globals.

Suspended Functions

Local variables become active only while a function is executing.
When finished, they are automatically erased from memory. But what
happens when a function does not successfully complete Its operations?
If an undefined variable 1Is referenced, or a mathematical error
encountered, the execution of the function Is halted immediately and
the line containing the error is displayed along with the type of:
error that has occured. Suppose our function BIL had an error In it.
Say we added to it a fourth line containing an erroneous statement.

VBIL
[ul6+
(5]V

That should do ft. Now if we execute It the following will occur:

5 BIL 7
SYNTAX ERROR
Brrfu] of

At this point BIL is considered to be still executing. It has become.
suspended because of some erroneous statement and will remain so until
it Is told either to vresume again or abandon its efforts. We can
determine that BIL is suspended by looking at the output of both the
state Indicator [JSI and the line counter 0LC.

0srI o \
BILx*

arc
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They Indicate that BIL is indeed suspended at line 4. But what about
the local variables created by BIL?

ava
X
51
52
A
B
EXT
0T
R

They are still present in the system and can be referenced.

EXT
35 '
A
5
B
7

They will remain in memory as long as BIL remains suspended, assuming
of course we do not erase them ourselves with the JEX function,

By typing in 0 we can get BIL to terminate Its execution and clean up
the mess It has left in the workspace.

>0 -
37.45 <=————our result

gsr
(blank screen)

gva
X
S1
52

More on suspended functions Is covered In Chapter 21.



Summarz

There are two advantages to having local variables. First, any data
name redundancies that may develop between items you have defined
earlier In the session and those that are used within defined func-
tions are automatically resolved. This serves as a protective device
for any data you have created that Is external to any function. Se-
condly, the 'housekeeping'" chores of your workspace are greatly
facilitated. You do not have to manually erase unwanted variables
created by a function each time it is executed. The system does this
for you.

The one advantage of global variables s that they are there whenever
you need them. They can elther reside In memory or 1In cassette and
can only be erased by a EX or OWC command. They are used to repre-
sent data you wish to retain.

Practice Exercises

t. Name the two kinds of variables that exist in MCM/APL.

2. What Is the major feature that.distinguishes a local variable
from a global? '

3. If two variables with the same name are in the workspace at the
same time, which one Is considered 'active' and which one. is
considered “inactive'?

4. Under what cdnditions would the situation described in questioﬁ b
exist? '
5. In the foilowihg header line, make the variable names 4, B and

C local to the function,
VZ+«X PBS Y
6. Make the variable M1 global to the following function.

VPERT;A3;Q;M1;R
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Chapter 11: . SOME MIXED FUNCTIONS

Chapters 4, 5 and 6 described over forty scalar functions available on
the MCM/APL system., These chapters demonstrated that the main char-
acteristic of all the scalar functions Is the direct relationship be-~
tween the lengths of the arguments and the lengths of their results.
Scalar arguments produced scalar results, three element vector argu-
ments returned three element vector results.

: 2 4 647 8 9
g 12 15

There was also a similarity in the arguments themselves. |f at least
one argument was not a single value,

3x4.5 20
13.5 60

then both arguments had to be of equal length and dimension.

2 446 3 5
LENGTH ERROR
B 4:6 3 5

This restrfctlon Is quite réasonéble as the arguments of most of these
functions require this conformability In traditional algebra anyway.
But there are other functions in MCM/APL where this rule Is not neces-

- sary, and therefore has not been applied. This group of functions,
called mixed functions, has been reserved for this chapter in order
‘that we could get a better understanding of how the APL system works.

Many of the mixed functions do not perform typical algebraic calcula-
tions, but rather offer a means by which to structure data into vary-
ing array forms and numbering systems. There are 22 mixed functions
in MCM/APL and, like the scalar functions, they too perform monadic-
ally and/or dyadically, For the complete list of their names, the
symbols they use and a brief description of what they do, see Appendix

- A. This chapter deals with five of them and the remainder are discus-

sed in Chapters 11, 12, 18 and 19.
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Restructure

The function wused to «create arrays of varying dimensions Is called
rho. The symbol used to represent it 1Is p (upper shift R). Used
dyadically, .the entire function is written as XpY, where X represents
the values of the dimensions the result is to assume, and the Y repre-
sents the actual contents of the resultant array. For Instance, to
define a 4 element vector containing the value 3, we would do it this
way:

4p3
to which the resbonse would be
3 3 3 3

or, if we wanted a 5 element vector of alternating 3's and u4's:

5p3 4
3 4 3 4 3
The system repeats the right argument as often as necessary until! it
equals the value of the left argument. |If the number of elements in

the right already exceed the amount specified by the left, the system
will take only the prescribed amount.

, 20YABCD!
AB

Notice In each of the above examples the left argument was always a
nonnegative integer. Obviously anything other than that would not be
acceptable. For instance, we could ask for three and a half numbers,

3.5p10
DOMAIN ERROR
B.5010

or for some negative amount,

T3p10
DOMAIN ERROR
Bso10

The system responds accordingly. This last example Is roughly equiv=
alent to trying to give some numbers back to the system.
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When the left arqument Is a single value, the result is always a
vector, ‘ ' B '

4pYABCDEFG®

ABCD *
» 10‘)![]!

00000ooooo

When the left argument is two values, the result Is In the form of a
2-dimensional array. _

2 3p5
5 ) 5 =
5 5 5

The number of elements contained In the left argument represents the
rank of the result. The actual values of the elements of the left
argument represent the dimensions or size the result Is to assume.

Above,. the result produced Is a 2 row, 3 column matrix. Here Is
another-

rqws columns

\

3 4pl1 2 3 4 56 7 89 10 11 12
1 2 3 4
5 6 7 8
] 10 11 12

The result above Is a matrix consisting of 3 rows and 4 columns. " The
left argument format is always the same.

(rows, columns) ) data
The flgnt argunent Ils used to develgp the result, a row at a time.
For 3-dimensional arrays, the formee is
(planes, rows, columns) p date

For example, the array generated below has 3 dimensions = 2 planes,
each with 3 rows and 4 columns,
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planes rows columns

2 3 yptar
AAAA '
AAAA
AAAA

AAAA
AAAA
AAAA

Here is one with 4 planes, each with 2 rows and 3 columns:

4 2 3p'Uxp?
VxA
VxA

VxA
VA

VxA
V%A

VA
YxA

This last one 1Is another example of the 3-dimensional arrays.
Actually these arrays can have up to 32 dimensions with each dimension
holding up to 256 elements. But it Is doubtful that you will be able
to create such arrays, as the memory Is not able to store them.

One array still to be covered is the scalar. Remember we said that if
the left argument of the reshape functlion Is a single value, the re-

sult 1Is always a vector? This means even if we ask for only one num-

ber, it Is still classified as a vector.

1p7 8 9
7

To get scalar results the left argqument must be two quotes placed side
by side. : '

'‘'p7 8 9
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The result Is still 7, but this time it Is a scalar 7, even though
there seems to be no visible difference between this 7 and the one In
the previous example. To determine the difference. we must employ the
rho symbol monadically, C

Dimension Of

To <create arrays of various shapes and sizes, we use the rho symbol

monadically In the form XpY. Once these arrays are created we can use
this 'same symbol monadically to find out what these shapes and sizes
are. For instance, to develop a four element vector, we could do the
following: '

D+4pb 2

Then to determine fts dimension, we would do this:
pD
to which the computer would respond with
" |
indicating D consists of four elements. The result of this iast ex-
ample equals the left argument of the previous example.

Let us define a matrix and take its dimensions. First the creation,

M<3 Wp6

then the dimension taking.

oM
3 4

Again the result Is the same as the left argument above. Notice also
this result Is a 2-element vector, just as the matrix M is . a 2=«dim-
ensional array. When the dimension of D was found, the result was a
1-element vector because D |s a 1-dimensional array. Therefore, we
can easily determine the number of dimenslions, or rank, of an array by
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counting up the number of elements contained in the result of a dimen-
sion of function. |In the example below, what Is the rank of P?

pP
2 3 4

If you said 3, you are right, because the result has three elements.
We could count these elements up each time, or we could employ the rho
symbol to do It for us. .

p2 3 4
3

An easier way is

VepP

pV
3

And an easier way yet Is

ppP
3

This means performing two cdnsecutive "rhos'" on a variable determines
Its rank, ‘

. oM
2 3
ppM
2
. pD_
u
ppD
1 ‘

This seems to work fine for vectors and matrices, but what about
scalars? Remember they have no.dimensions. .Therefore, the only log-
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ical conclusion is that the system will return a vector result, but a
vector that has po elements.

pb6
(blank screen)

The system displayed nothing, indicating the result of p6 is an empty
vector, or a vector containing no elements corresponding to an argu-
ment which has no dimensions. One way to determlne If this is act-
ually the case is to take the dimension of the result. |If It has no
elements, what do you think the result of the operation will be?

ppb
0

Right. This Is why iIn Chapter 3 we were able to say that scalars have
a rank of O, .

We have not seen the last of the empty vector. It Is referred to sev-
eral times again, particularly In Chapter 15 concerning the branching
ability within defined functions.

Iindex Of

One of the very useful mlixed functions In the MCM/APL'system Is 1Y,
The lota symbol 1 (upper shift I) Is used to determine ‘where 1{in the
'vector X Is the first occurance of Y1", _ S

7 8 918
2

The result above gives the relative location of the 8 within the
vector 7 8 9, We can see this Is position number 2. '

YABCDEF*'*DA'
41

Above D Is the fourth element In the left argument and 4 is the first.
In the case where the right argument is not In the left argument, the
system returns a value which Is pne-lnteEE? greater than the length of
the Jeft argument. ' ,
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VEYZY eh A"
'YXYZ' 1 'AXY

'‘THE BIG RED BARN':\'THREAD!
1 2 9 3 14 11

This function gives us the capability of comparing literal data just
as we have with numerics. We saw that relational functions such as
greater than (>) and less than (<) work with numeric data only. They
tend to rule out any <chance of testing the similarities between
literals, But, by employing the Index gi function, we can get around
this restriction. Our first step Tn doing this Is to assign all the
letters of the alphabet to a varlable.

- ALF+'ABCDEFGHIJKLMNOPQRSTUVWXYZ®
Then by wusing this as the left argument, we can easily determine the
relationship between individual characters In the right argument.

ALP\'AB"
1 2

ALF\'ABA"
102 1

ALF\'PAYROLL'
i6 1 25 18 15 12 12

When we get into the actual Indexing of arrays, we will see several
applications where this function can be employed.

In the examples used so far, the arguments have been either scalars or
vectors, This function can also accept arrays of greater rank, but,
in all cases, the left argument must always be a vector. Here are a
few examples where it Is not.

313
RANK ERROR
B3
' A«2 2p1u
|
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Ar2 4
RANK ERROR
B2 4

The reason for the RANK ERROR's |Is quite simple. In the first
example, 313 , the left argument i{s a scalar and, as stated earlier,
scalars have no magnitude or direction. Therefore, it Is Impossible
to produce an index value for it. You will see further examples of
this when we get to the section on indexing of arrays.

The second example failed because the system has no adequate means of
expressing the various coordinates of each dimension. It could not
return a result of

1;2 2;2

as this is not in keeping with the consistency of an all numeric re-
sult for this function. As a consequence, the left argument must
always be of rank 1. This of course does not imply that the right
must also adhere to the same rule. Quite the contrary. It can be of
any rank and shape 1[It likes. You will notice from the following

examples that the rank and shape of the result !s always the same as
that of the right argument.

2 W4
3 1
3 2
3 6 912 2 2p18
i 4
1 y
4 2
i 4
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Iindex Generator

in the examples so far that have Involved arrays with ranks greater
than zero, we have had to generate our own numbers. For instance, to
create this varlable,

X«l1 2 3 456 7 8 9 10

we have manually keyed 1In all the numbers and the required spaces,
There are many Instances like this one where the numbers involved are
pretty straight forward, yet the task of entering them is fairly
arduous. Now that we have come to this section, we should be able to-
simplify the job, for, as the title says, the function described here
generates numbers, beginning at the Index origin. Here is its format:

194

It generates a string of all the lntegéfs from one to Y.

110

i1 2 3 4 5 6 7 8 9 10
13

1 2 3

The index origin or starting point for both the monadic and the dyadic
uses of the 1 symbol is preset to 1,

2x1 4
2 4w 6 8

This ian’ be changed to 0 by means of the system variable (0I0 (index
origin). . C

' gro«o

B

With it set to zero, here are a few more examples of both the monadic
and dyadic lota functions: :

77 78 79177
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Let us change it back to 1 as It Is easier to understand the rest of
the examples when they are executed in an origin 1 environment.

0I0+«1

in the section Dimension Of, remember we discussed the empty vector.
We were able to create It by taking the dimensions of a scalar. We
could also have created one by using the dyadic rho and telling it to
take none of the elements from its right argument.

0p2 3 &4
(blank screen)

Due to the fact that It can be created, we should have some means of
representing It to the system and to other users. So MCM's deflnition
of an empty vector is

10

That's it. If you take the dimension of this expression you will see
It is in fact equal to zero.

P10
0

More about this little creature later.

S0 now we have learned what the rho (p) and the lota (1) symbols do.
We can quickly generate numbers with the monadic lota

112
1 2 3 4 5 6 7 8 9 10 11 12

and we can reshape these numbers into a variety of structures.

Med 4pr112
|

M
1 2 3 §
5 6 7 8
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A+«3 2 2p112

A

1 2

3 4

5 6

7 8

9 10

11 12

We <can determine the dimensions and rank of any variable by means of
the monadic rho function,

pM
3

pd
3 2 2

poM
2

ppéd
3

And we <can even pick out where, In a certain vector, lies the first
occurance of some particular data.

6.7 2.5 8.418.4
3 :

By knowing Jjust these four functions, the number of applications
possible increase tremendously. And once you have covered the next
function described 1in this chapter, your scope for problem solving
will have increased even further.
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lndexing

Selecting specific data from an array is the function of the square
brackets [ ]J. To illustrate how this is done, assume we have a vector
called P and in It there are S5 numbers.

p
100 86 57 63 74

Assume too that, when P was defined, the third element was mistyped.
It should have been 67 instead of 57. |Instead of assigning all the
numbers to P again and running the risk of another typing error, it
would be preferable to just replace the one in error. To do this,
here Is what to type:

P[3]+«67

Upon displaying the contents of P, we see this was In fact done.

p
100 86 67 63 74

If we want to select specific members of P, all we have to do is in-
dicate their relative locations, or indices as they are called, and
the system will get them for us. .

P[2 4]
86 63

P[1 3 1]
100 67 100

The order in which the indices appear within the brackets dictates the
order in which the values are indexed.

P[5 1]
7% 100

The indexing'operatlon can even be a calculation.

PL[2+3]
74

And indexing variables can be used as arguments to other functions.
- 6+P[5] |
80
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P[1]+P[5]
174

They can even be used as arguments to other indexing operations.

P(P[5]-731
100

just as long as the indices do not exceed the dimensions of the arrays
they are indexing.

PlL10]
INDEX ERROR
Bl1o0]

If the array to be indexed Is a matrix or a multidimensional array, we
must distinguish to the system which planes, rows and columns we wish
to Iindex. For example, in the matrix below, suppose we want to Index
the third element In the second row, which Is the letter L.

MAT
MCM
APL

We must have some way of telling the system where this tetter Is. To
do this, we state its coordinates, or points of relative location, in
the following manner: : '

[2;3)
The above example points to the element situated in row 2, column 3.

"The sequence Is always the same - the value representing the row is
stated first and then the column's indice.

matrlx[row;cofumn]
Here Is the entire function:

MATE2;:3]
L

The coordinate value representing the row is always separated from the
value representing the column by means of a semicolon.
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To select the element in row 1, column 2, we type

MATL1;2]
C .

To obtain all the letters in row 1, we could type

MAT(1;1 2 3]
MCM

or, a much simpler expression Is just

MAT(1;]
MCM

When there are no values supplied for the specific coordinates of a
dimension, the system assumes we mean all the coordinates for that
dimension. In the above case, where no column coordinates were
specified, the system Interpreted this as meaning "extract the entire
contents of row 1", To pick out the third element In the first row
and the second element In the second row, the expression would be

MAT(1 2;3 2]
MP

Now that we have found out how to Index specific points within a
vector and a matrix, can you determine how multidimensional arrays are
indexed? Remember, they do not have just rows and columns, but also
planes. There has to be some way of telling the system which plane,
row and column you mean., For instance, the array 41 has 3 dimensions.

41
101 102 103 104
105 106 107 108
109 110 111 112

201 202 203 204

205 206 207 208
209 210 211 212

It has 2 planes, each containing> 3 rows and 4§ columns, which can
quickly be verified by the following function:

pA1l

2 3 4
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We want to find out what the contents are In the second row, third

column of the first plane. How do you think it should be stated? I f

you said A1[2;3;1] you are almost right. The correct answer is

A1[1;2;3] since the rows and columns figures are always the last two
in any indexing operation. The sequence for specifying the indices of
a 3-dimensional array s this: :
arraylplane;row;column]
For a matrix, it is simply
matrix[row;coiumn]
and a vector Is just

vector[element]

In the above array 41, the value 107 is sltﬁated In the second row,
third column of the first plane. '

A1[1;2;3]
107

The entire second row of the ffrst plane 1Is

A1l1;2;])
105 106 107 108

and the_entire‘third column of the first plane Is

 A1[1;;3]
103 107 111

The entire first plane s
A1[1;;]

101 102 103 104

105 106 107 108

109 110 111 112

What would be the result of this expression?
A1[;2;3]

Try it and find out.
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To {llustrate :how new véluesvarerre-dssignedvto any of these Indexed
points, here are a few examples:

1: freplacing the value 107 with a zero

A1[1;2;3]«0

H

A1
101 102 103 104
105. 106 108

109 110 111 112
201 202 203 204
205 206 207 208
209 210 211 212
2. respecifying row 2 of the first plane to contain all 1's

A10132;1+1

A1

201 202 203 204
205 © 206 207 208
209 210 211 212

3: respecifying column 3 of plane 1 to contain "1 "2 "3

A1[1;33]«71 "2 73

A1l
101 - 102 104
105 106 108
108 110 112

201 202 203 204
205 206 207 208
209 210 211 212
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h: respecifying all of plane 1 to contain the numbers 1 to 12

A1[1;;1«3 4pr12

Al

201 202 203 204
205 206 207 208
209 210 211 212

You will find that by structuring data Into arrays and Indexing just
those portions required, problems are not only simplified, but also
the number of variables required Is reduced. As you become more adept
with MCM/APL, you will find yourself using arrays more and more In
your applications because anything you can do with individual vari-
ables, you can also do with larger arrays, with the aid of Indexing in
many cases.

We have by no means covered all the applications that can be done by
using indexing. They are almost as numerous as you care to make them.
You will see a few of them in examples contained in descriptions of
some primitive mixed functions still to be discussed in the next chap-
ter and In the practice exercises, '

. Practice Exercises

1. Using the MCM/70, evaluate the following:

(a) 10 ‘ (b) 2x16 (c) “3+.17
(d) pr10 (e) o1 (f) o111
(g) (2x16)[3] (h)  (110)110 (1) (2+110)[5 10 53

(J) 03 upr12 (k) o0 (1) »pro0
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If M+3 4p10+112 , evaluate the following:

(a) M[1;2] (b) M[2;1] (¢) M[1;2 3]
(d) M[3;] (e) M[1 2;1 2] (f) pM[1 2;1 2]
(g) M[;3] (h) M3 23] (1) oM[3 23]

(j) M(12-M[1:1]5) (k) M[;10|M[1;1] (V) M[;1]

(a) Create an array having 2 planes, each with 3 rows and &
columns, and containing the numbers 201 to 224 con-
secutively, ’

(b) Replace the value In the second plane, third row, first
column with the number 36.

(c)‘ Multiply the entire first plane by 10,
(d) Place zeros In the first row of the second plane.

(a) Find the Indices of the negative numbers In the vector V.

(b) Using a single APL statement, replace all negative values in
V with the number 10,
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Chapter 12: MORE M!XED FUNCTIONS

This chapter describes eight more functions belonging to the mixed
function group. They bear little relationship to one another, but can
collectively be used to perform some rather sophisticated operations.
The remaining mixed functions yet to be discussed are contained |In
Chapters 18 and 19.

Membership

Earlier we saw the index of functfon, which states where, in the left
argument, the first occurance of the right argument Is.

2. 6 7 517
3

There Is also a function that answers the question '"Is the following
data to be found within the argument?", The syntax for this function
Is , A

AeB

and 1Is read as '"Is 4 a member of B5?". But unlike the index of func~-
tion which returns the right argument's relative location within the
left argument, the membership function ¢ (upper shift E) returns a
"yes-no' response of 1 or 0, just as the vrelational and logical
functions did. ' :

7¢2 6 7 5
1

Because the result is 1, we know the value 7 Is a member of the right
argument.

3 6e2 6 7 5
0 1

The 3 Is not a member, but the 6 Is.
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Notice the size and shape of the result Is the same as that of the
left argument, which Is not the case for the index of function.

(2 2pi14)el 1
1 0
0 1

Its left argument must be a vector, whereas the membership's argument
can be of any rank. '

(2 3p16)e3 3p 2 6 3 0 7 12 9 2.5 1

1 0 1
0 1

0
The arguments can even be literals.

'THAT'e *HELLO THERE'
1 1 0 1

Literals and numerics can also appear together, although -

'3'%3 4
0 v

the result will always be 0's,

Grade Up !

If an occasion arises when you would like to have a certain set of

numbers re-arranged Into ascending or descending sequence, you could
write a 4 or 5 line function, or you could employ either the grade up
or the grade down, in conjunction with the indexing function. For in-
stance, assume you wanted to display the values 7, 4, 1, 9 and 6 In
ascending sequence, you would first assign them to a variable,

X+«7 4 1 9 6

and then perform the followlng'operation to get the displayed result:

XC4X]

1 4 6 7 9

12.2



(The 4 symbol is a combination of the. upper shift H symbof A over-
struck with the upper shift ¥ symbol 1)

Let us take a <closer look at the expression above. Because two
functions are involved, it is obviously a 2-step operation. The first
operation performed is the 4X. Here it is by itself. See if you can
determine what it does.

AX
3 2 S5 1 &4

Can you quess? Notice the numbers displayed range from 1 to 5 but are
arranged in a rather random order, Can you see anything common be-~
tween the values and their respective positions in the displayed vec-
tor with those of X? Really 1t 1is quite simple. The result of
32514 is saying that the third element of X is the lowest value,
the second is the second lowest, the fifth is the mliddle value, the
first is the second highest and the fourth Is the highest. If we in-
dexed X with this vector, what do you think the result would be?

X[3 2 5 1 4]
1 4 6 7 9

That's right. It is the values of X displayed in ascending sequence.
Therefore, the function 4X produces the indices of the values of X In
the order dictated by the values of the elements in X.

Here are a few more examples:

472 73 Tu
3 2 1

43 3 3 3
1 2 3 4

Notice that if there are any elements with the same value, the system
ranks them according to their relative positions within the argument.

A'ABC!
DOMAIN ERROR
R 48c!

42 2p14
DOMAIN ERROR
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The arguments of both the grade up and the grade down functions are
limited to numeric vectors, but there are several user defined func-
tions available to ailow 'you to overcome these restrictions if you
need to. -

Grade Down

‘As  you have probably quessed, the grade down function ¢ (V overstruck
with |) does essentially the same- thing as the grade up. However, its
result contains. the indices arranged  to. denote ‘the values of the argu-
ment according to their. respectlve magnitudes, with the index of the
largest value appearing first. ' " S

X

7 4 1 9 6
124

4 1 5 2 3
X[¥x)

9 7 6 4 1
¥72 T3 Ty

1 2 3

, ¥3 3 3 3

1 2 3 4

It also treats elements with the same values lidentical to the way the
grade up function does. Their respective locations become the ‘decid-
Ing factor.
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Catenate

One of the properties of most of the mixed functions s the ability to
manipulate the sizes and shapes of arrays. Some generate arrays,
others simply alter their existing dimensions, and still others expand
or diminish the defined arrays. One that does expand the sizes of ar-
rays is the catenate function , . Its syntax is

X,Y
where Y Is appended to X to produce a result which contains both the

elements of X and those of Y. For example, If we wished to take two
vectors and join them together, we would do it like this:

2 4 6 3 5 7

The two vector arguments above each have 3 elements. Therefore the
result is a 6-element vector.

' A«2 4 6,3 5 7
[ | o
pA
6

If we had forgotten to include a number in the above statement, say it
was a 10, we could just do - :

A«4,10

which would append 10 to the values already represented by 4, thus
avoiding the problem of having to retype all the numbers in again.

A
6

2 4 3 5 7 10

What If we missed a number somewhere in thé middle? Perhaps there
should be an 8 between the 6 and the 3. Any ideas? Well, how about
this? ’

A«AT13]),8,A[3+14]
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The same operation could have been written as

. A+A[1 2 31,8,4[4 5 6 7]

It is Jjust that the former one saves a few key strokes. Here are a
few more examples~

2,4 6.7 11
2,3,4,5,6
2 3 & 5 6

4 2,8,7 21 3,9
4 2 8 7 21 3 9

|”|’|I"tci’|Rl"0|
MICRO .

"MONTHLY',* ','STATEMENT'
MONTHLY STATEMENT '

This function comes in handy whenever enterlng a string of data that
Is too long to be entered on one line. Say there were 100 numbers to.
enter. They could not all fit on the same lnput 1ine,  But we could
enter as many as possible at a time, then tack on the rest on the next
line. Here Is a small sample to show how this Is done:

N+2 4 6 8 10 12

N
N+N,14 16 18 20
After the gsecond 1line has been entered, ¥ contains all ten numbers,

Just as lf they had all been typed in together.
” |
2 4 6 8 10 12 14 16 is8 20
Besides catenatlng scalars and vestors, we can also join matrices and

multldlmensional arrays together., Here Is an example of two matrices,
X and R4 be!ng joined: g
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|
Y«2 306
|
X,Y
3 3 6 6 6
3 3 6 6 6

Here is how we can add one more column to a matrix:

or one more row:

Xx,0[119
3 3
3 3
9 9

The [1) indicates -to the system the catenation Is to be performed
along the first coordinate of the left argument (in this case, the
rows).

If neither of the arguments is a scalar, the arrays involved must be

of equal rank and the corresponding dimensions of the coordinates not

being joined together must be equal. Here are a few more examples:

A<2 3 yp'taA?

B+2 3 S5p'B!

A,B
AAAABBBBB
AAAABBBBB
AAAABBBBB

AAAABBBBB
AAAABBBBB
AAAABBBBB

pA,B
2 3 9
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AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

ceee
ccee
ceee

AAAA
AAAA
AAAA
DDDD

AAAA
AAAA
AAAA
DDDD

2 4

If catenation 1is going to occur along the flirst coordinate only, we
can use the expression 4,[1]C or we can use this: '

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

cecee
ceee
cecee

C+1 3 up'cC!

A,[1]C

pA,[1]C
mn

D+2 1 up'D"

A,021D

pA,[21D
y

AsC

12.



The symbol above 1Is a combination of the comma and the minus sign.
When they are wused together, catenation occurs along the first
coordinate only, The minus sign used here Is also used with several
other functions to represent first c¢oordinate operations. One of
these is covered In the next chapter.

Ravel

When the c¢omma is used monadically, It is called the ravel function.
Its purpose Is to turn its argument Into a vector result.

22 2p1 Y
i 2 3 &

Ps2 2p1 bl
y

The length of the result Is always the product reduce (x/parg.) of the
dimensions of the argument.

M
BIG
BAD
JOE
pM
3 3
x/oM
9
. M
BIGBADJOE
p.M
9

Notice ravelling of the matrix Is done a row at a time. Arrays of
~greater rank are ravelled a plane at a time. This 1Is the same
sequence used by the dimensioning function p.
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One other point here is this function also offers an easy way of con-
verting a scalar Into a one element vector.

- PS5 '
(blank screen)

Ps5
1
This little fact may prove of assistance when performing calculations

requiring vector arguments. One of these .Is the dyadic 1 function.
Its left argument must be a vector. ' S

Take

The take function 4 (upper shift Y) literally takes data from its

right argument agcording the amount(s) specified in the left argument.
342 6 "4 7 5

2 6 U4

1427 26 15
27

In the first example above, the system was asked to take the 3 leading
elements of the right argument, and the second example asked It to
take only the .first element of Its right argument. The number of ele-
ments in the left argument must always equal the rank of the right.

: M
101 102 103
104 105 106

107 108 109 103
110 111 112 106
: 107 108 109
2 2tM . 110 111 112
101 102 '
104 105

in the above, the system was asked for only the f!rst two rows of the _

first two columns of M.
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It also works with literal data.

34'HISTORY'
HIS

L
HADDOCK
HAMBURG

2 3+L
HAD
HAM

Apart from "taking" from the front of the right argument, we can also
take from the end. This Is done by negating the left argument.

342 6 "4 75

v 7 5.
1427 26 15
15
“54'HISTORY'
STORY
"2 Tutl
DOCK
BURG
Drop
The drop function + (upper shift U) Is the reverse of the take.
2+'ABCDE!
CDE
2+ YHISTORY'
STORY

If the left argument is positive the result is any data that remains
in the left argument after the prescribed amount has been dropped off.
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3+10 21 16 32 27
32 27

If the system s asked to drop off more data than f|s provided the
result is an empty array.

4Ly7 8
(blank screen)

o 94+7 8
o' ‘

This function also works with larger arrays.

N M » -
101 102 103 '
104 105 106 '
107 108 109
110 111 112

2 2+M
109 112

If this last answer Is confusing, look at the ACcompanyfng schematic.

Here are two more:

0 3+L
DOCK Dock
BURG BURG
and

0 “u+L N
BAD HA DY,
HAM HA

Dyadic Random (deal).

Remember earlier we discussed the properties of the monadic random
function? Its use Is to select an integer, at random, from 1 to

N where N represents the right argument. When this same symbol, ?, is

‘used to form a dyadic function, it Is called the dyadic random . and

performs in a similar fashion to the monadic random. However, Instead
12. 12 o



of selecting just one Integer, It can select several. The quantity to
be selected Is specified by the left argument and the population range
Is represented by the right.

3210
1 8 6

3210
2 5 3

3210
y 7 8

Notice there are never any Integers the same In each of the results.
Selection Is always done without replacement.

Practice Exercises

1. Generate ten random numbers between 1 and 50 and find out which
ones fall between 10 and 20. (use the membership function.)

2. Write a function "to sort alphabetic strings Into ascending se-
quence,

3. Use the take and drop functions to extraét the word LIKE from the
sentence

THE LAKE WAS 'LIKE A SHEET OF GLASS

4, Using the following matrix, re-arrange the rows by sorting the
last column Into ascending sequence.

A
SCREWS
JIGSAW
PLANER
PLIERS
WRENCH
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The result should be

"WRENCH

PLANER
SCREWS
PLIERS
JIGSAN

Repeat

the process In question 4, working from the last column to‘

the first. Once you have covered "branching', you should be able
to develop a function to do this, ”
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Chapter 13: REDUCTION AND SCAN WITH MULTIDIMENSIONAL ARRAYS

In Chapter 7 we saw how the reduction and scan functions work. The
arguments used In every example were vectors., But, like most of the
MCM/APL functions, these two <can also accept arguments of greater
ranks, Multidimensional arrays were not included in Chapter 7. In-
‘stead left for this chapter to allow you to become more familiar with
- higher ranking arrays and how they are formed.

Reduction
Just to refresh your memory, here is a plus reduction of a vector:

+/19
45 ‘

If ¢this vector 1Is reshaped into a matrix and the same function per-
formed, we get the following: .

l A+3 3p19
+/4
6 15 24

OQur matrix looks like this:

.|

1 2 3

4 5 6

7 8 9

and the result Is calculated like this: _ (
1+ 2+ 3= 6 )

4 + 5 + 6] = 15 | , '

7 + 8 + 9= 24 /
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Here is another:

x/A

-6 120 504

which is calculated as

‘1)_(2)( = B

II

4 x 5 x 6| = 120

7 x.8x 9 = 504

As with vectors, the order of execution Is still from right to left.

+/A
1.5 4.8 7.875

which Is

1 + 2 +# 3[= 1,5

7 + 8 + 9= 7.875

It appears as If the reduction Is performed along the rows, er first
dimension of the array. This is trué in a way. The reductien is
actually done along the corresponding elements of A's columns, or
second dimension. The first element In column one ls-dlvideﬂrqEY the
first element 1In column two, after It has been divided by the Ffirst
element In column three. Even though It 18 defined this way, vyou
should think of it In which ever way Is easfest to remember. The con-
fusion occurs when reduction Is performed along the rows, For 1In-

stance, to sum along the first dimenéion, the eéxpression Is

+/t1]A
and the result is

12 15 18
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The [1] means the reduction is to be pﬁrformgd along the cdrrésponding

elements In each of the rows of A, "
1 2
#u |s |
| |
7 8
12 15 18

Here is another:

x/[1]4
28 80 162
which is
1 2 3
x| 4 5 6
7 8 9

28 80 162

Since we can specify the first coordinate with this function, we
should also be able to specify the second.

+/02]4

6 15 25

which is the same as P
+/4

6 15 25

or columns coordinates, as A has only two dimenslions.

If the array is of greater rank, this same feature applies.
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P<2 3 4pr12h

(S
oo N
w

~3
N O F

13 14 15 16
17 18 19 20
21 22 23 24

10 26 42
58 74 90

or

| 9 + 10 + 11 + 12]= u2

[13 + 14 + 15 + 16|= 58

[17 + 18 4,19 + 20]|= 74

[21 + 22 + 23 + 24|= 90

The shape of the result above is a 2 by 3 matrix. Thils shape Is de~
termined by the coordinate along which the reduction takes place, The
result has all the dimensions of the argument except the one which Is
being "reduced'. Above, this Is the columns, which has a dimension of

This last example could also have been written as
+/[31P
since the third coordinate represents the columns.

Reduction along P's rows ls done by referring to the second coordin-
ate. l ' , :

+/[21P

1s 18 21 24
51 54 57 60
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and reduction along P's first coordinate is

+/[11P
14 16 18 20
22 24 26 28
30 32 34 36

or we could use the symbol # (/ overstruck with the minus sign -) to
do the same thing.

+4#P
1y 16 18 20
22 24 26 28
30 32 34 36

The +# symbol is identical in meaning to the symbols /[1]. Reduction
always occurs along the first coordinate.

x{A
28 80 162

Reduction Example

?or five days, three boys harvested the following number of bushels of
apples:

Mon. Tues. Wed. Thurs, Fri.
Greg 10 12 1" 12 9
Mike 9 13 14 11 10
Jim 11 11 - 13 14 9

To evaluate the boys' performance, the man who owns the orchard wants
to know the following three things:

1. How many bushels did each boy pick?
2. How many bushels were picked each day?

3. What was the total number of bushels picked?
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The first step in finding the solutions Is to assign the bushel counts
to a variable.

The next step Iis to reShape this variable into a matrix similar to the
one above.

Then solve the three problems,

B«10 12 11 12 9 9 13 14 11 10 11 11 13 14 9

B+«3 5pB

+/B solution to question 1
54 57 &8
+#B solution to question 2

30 36 38 37 28

+/+/B solution to question 3
168 ’

Scan

The scan function works iIn an Identical manner to the reduction.
Using the same arrays A and P, here are a few scan examples. First, a
display of the contents of A and P:

A
1 2 3
v 5 6
7 8 9
P
1 2 3 i
5 6 7 8
9 10 11 12

13 p 15 i6
17 18 19 20
21 22 23 24
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6
15
24

T12
T12
T12

13

17
21

+\4

5 3

11 6 along the second coordinate
17 g

+%4

15 18

13 15 along the first coordinate
8 9

-\P

3 1 u

7 1 8
11 1 12

along the last coordinate

15 "1 16
19 1 20
23 1 24

-\[2]P

6 7 8
Ty Ty Ty

10 11 12
along the second coordinate

18 19 20

“y Ty Ty

22 23 24

-%P

T12 T12 12
12 12 12
T12 12 T12

along the first coordinate

14 15 16
18 19 20
22 23 24
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Scan Example

The ABC Company has 5 branches spread across Canada. At the end of
the fiscal year, head office receives balance reports from each of the
branches indicating their net income for each of the 12 past months .
Here are their figures, Including their respective balances at the end
of the previous vyear: : '

Montréal Toronto Winnipeqg Edmonton Vancouver

Last Year's Bal. 1,190 1,850 755 925 1,025

Month end Bal.'s
January 75 92 L7 ‘ 55 72
February 85 99 52 59 81
March 93 116 56 ' 6L 89
April 115 132 62 77 100
May 105 147 68 89 114
June 127 152 71 101 112
July 128 155 79 113 115
August 103 135 72 110 107
September 96 127 61 102 102
October 88 112 63 91 97
November 86 101 63 89 92
December 72 98 52 82 83

(figures are In thousands)
Head office wants to know the balance figures at the end of each month
for each of the branches, using last year's closing balance figures as
a base. '

The first step In solving this is to store the figures Into a matrix.

BAL
72 98 52 82 83
86 101 63 89 . 92
88 112 63 91 97
96 127 61 102 102
103 135 72 110 107
128 158 79 113 115
127 152 71 101 112
105 147 68 89 114
118 132 62 77 100
93 116 56 6L 89
85 . 99 52 59 81
75 92 47 55 72

1190 - 1850 755 925 1025
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Notice the contents of BAL form an Inverted matrix to that of the pre-
vious figures. The reason for this will become apparent shortly.

The next step Is the scanning.

+}BAL .
2363 3316 1501 1957 2189
2291 3218 1449 1875 2106
2205 3117 1386 1786 2014
2117 3005 1323 1695 1917
2021 2878 1262 1593 1815
1918 2743 1190 1483 1708
1790 2588 1111 1370 1593
1663 2436 1040 1269 1481

1558 2289 - 8972 1180 1367
1443 2157 910 1103 1267
1350 2041 854 1039 1178
1265 1942 802 980 1097
1190 1850 - 755 - 925 1025

Scanning Is conducted from the bottom to the top of the matrix. This
Is consistent with our right-to~-left execution rule. '

Practice Exercises

1« In June 1970, the population of the ten provinces and two‘terri-
tories of Canada were as follows:

Nfldo PlEQl. N.s. N.Bo Queo Oﬂt. Mano SﬂSk. A]ta. Boc. YUkOn N.onc

517 110 782 627 6013 7551 983 941 1595 2128 17 33

(figures are In thousands)
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In 1971 and 1972, the
amounts:
1972 1971

Nfld. . 10 5
P.E.I. 1 2
N.S. 5 7
N.B. 7 8
Queo 31 15 :
Ont. 122 152
Man. 4 5
Sask. -10 -15
Alta. 27 33°
B.C. 62 57
Yukon o 1
N.W.T. 1 2

Construct a

10

1

5

7
31
122
4
~10
27
62
1

1

population

12 by 3 matrix like this:

-
Vi o~ N i

152
15
33
57

2

517
110
782
627
6013
7551
983
941
1595
2128
17
33

Increased by the following

and find the population amounts for each of the provinces and two
territories for June of
population of Canada for each of the three years.

1971  and

13.10
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Chapter 1b: ,] COMPRESSION - EXPANSION

MCM/APL offers several functions that allow you to select specific
elements from existing arrays. These functions Include take, drop,
restructure, and Indexing. Each performs quite differently, but they
all do essentially the same thing. There are two more functlons that
also fall 1into this category. They are compression and expansion.
Their formats are the following:

Compression Expans ion
v/IN1A V(A4

Notice the compression function uses the solidus symbol /, used also
by the reduction function, and the expansion employs the reverse sol-
idus \, used by the scan. The in both cases Is a logical vector of
1's and 0's; the N indicates along which coordinate the function s
being applied; and the A is the array to be compressed or expanded.

Compression

Here 1Is a typical example showing how the compression function works:

101/6 2 4
6 U

The left argument 1 0 1 above directs the system to select only the
first and third elements of the right argument. The left argument's
Tirst element, 1, tells the system to select Its counterpart in the
right. The second element, 0, tells the system to Ignore 1its right
argument counterpart, and the third element, 1, asks for its counter-
part be selected, giving us a result of 6 4, Here are a few more
examples: .

110 1/2 "4 7 5.2
2 "4 5,2

0 0 1/3 27 81
81 '

0 0/2.2 ©
(blank screen)
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The result of this last example is an empty vector since the function
asked for none of the contents of the right argument to be selected,

When dealing with arrays of rank greater than 1, entire planes, rows
and columns can be omitted.

2 M+3 4p112
M
1 2 3 N
5 6 7 8
9 10 11 12
100 1/M
1 M
5 8
g 12
or
100 1/[(21M
1 n
5 8
9 12

The [2] indicates the compression is to occur along M's second coordi~-
nate, which In this case Is the columns or last dimension, as M has
only two. When this pointer is omitted, the system automatically de-
faults to the last dimension. This Is why the above two compresslions
produced identical results.

In order to eliminate one or two of the rows from this matrix, we
would use [1] to indicate this to the system.

10 1/01]M
1 2 3 4
9 10 11 12

Seeing that we are dealing with the first dimension, we could use the
symbol ¥ as we did with the reduction function.

1 0 14M
1 2 3 4
9 10 11 12

When # is used, the system always assumes the compression Is along the
first dimension. |If the right argument Is a 3-dimensional array, it
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would be the planes that are compressed. |If It Is a matrix argument,
the rows get compressed, If the argument Is a vector, the £ performs
identically to the /, since vectors have only one dimension anyway.

0 1 042 3 4

0 10/2 3 4
3

Here Is a hypothetical problem which could be solved by using the com=
pression functlon.

At the end of a semester, a teacher wanted to find out which
students in his class attained honours standings. He had gliven
three tests during the term. Their marks were as follows:

Name ‘ Test 1 Test 2 Test 3
Mannen 25 26 20
Burden 17 24 ' 18
Phelps 24 33 21
Duncan 20 25 17

(He had a very small class)

The first and the third tests were out of 30 and the second test
was out of 40, which meant a perfect score would be 100, He was
Interested In those with 75 and over.

With this data, he created two matrices - one called MRX and the other
called NMS, MRK contained the students' marks while NMS contained the
corresponding students' names.

MRK
25 36 20
17 24 18
24 33 21
20 25 17

NMS
MANNEN
BURDEN
PHELPS
DUNCAN
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He then summed up the. marks for each student‘and storéd them in a
variable called SUM. ' . :

SUM«+/MRK

SuM
81 59 78 62

The next thing he did was to compare the values contained in SUM to
the honour Indicator 75 to see which ones were equal to or above this
level, :

755SUM
1 0 1 0

Since there are so few students Involved, he could have easily
determined this just by Iooking at the contents of SUM. However, as a
class would normally contain a few dozen students, a "manual" method
of comparison would not pnly be lengthy, but also suseptible to
errors. So It is always best to perform a '"computer comparison' any-
way. B [

Here - Is the same operation again, but with the result being assigned
to a variable:

TOP+75<SUM

Now, all he has to do Is use TOP to perform a compression on NMS to
get the names of his honour students.

TOP#NMS
MANNEN
PHELPS

He could have done this entire calculation using only ohe‘statement.
(75s+/MRK) #NMS

MANNEN
PHELPS

- Besides performing logical compressions on data, this function Is also

used to perform '“branching" withln user deflned functions, as we will
see in the next chapter.
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Exgansion

The expansion function 1is very similar to compression. |t has the
same properties, except that Instead of compressing its right argu=-
ment, it increases its size. Here Is an example:

100 1\6 7
6 0 0 7

The result 1Iis an expansion of the right argument. The system uses
zeros to indicate where expansion took place.

1 001 1\66 67 68
66 0 0 67 68

| f the expanded array Is a literal, blanks or spaces are used.

11000 0 1 1\'4ABCD?
AB cD

The expanded results retain the same properties as their respective
arguments. Only their sizes are different. If the argument s
numeric, so too Is the result.

1 0 1\2 3
2 0 3 '

10+1 0 1\2 3
20 10 30

The size of the result |s determined by the length of the left argu-
ment.

X+3 4p112
H
X
1 2 3
s & 7 8
2

9 10 11 1

1011 1\X

1 0 2 3 4
5 0 6 7 8
9 0 10 11 12

1101 1\*‘INTO
IN TO
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MCM
APL

101 0 1\Y
MCM '
APL
To fncrease the number of rows in X and Y, the expansion must occur

along the first coordinate. Either the [1] or the X can be used to
accomplish this, ' '

110 0 a\[11x

1 2. 3 n
5 6 7 8
0. 0 0 0
0 0 0 0
9 10 11 12
, 10 0 1%Y
MCM

APL

Arrays of greater rank can be expanded in the same manner.

One final note. The number of 1's in the left argument must equal the
dimension along which the right argument is to be expanded.

Practice Exercises

1. Evaluate the following:

(a) 10 1/2 3 4 (b) 1 0 1\2 3
(¢) 0/3 (d) o\3
(e) (A<B)/A«110 .- (F) (0,(x|4),0)\4«"2 6 1.1 ~7
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Try these two expressions:
0\10 |

and
0\"

The first one returns a result of 0 and the second one returns a
single space, or blank character. To prove it, try

J !:0\1!

The result is 1. |If the same comparison Is conducted on 0\10 the
resuit Is O, :

Knowing that Op of a literal returns an empty literal vector, '°',
and 0p of a numeric returns an empty numeric vector 10, write a
function which has the header line

VR«LORN X
fo determine If X Is a literal or a numeric.
Compress the first and the third rows ouf of the matrix
A«3 4pr12
Expand the result back up to the same dimensions as 4, but with

the compressed result occupying the first row and the other two
rows being filled with zeros.

In the following matrix, select all the rows that begin with the
letter P,

F
PEACHES
APPLES
PEARS
CHERRIES
ORANGES
PLUMS

“"Blank out'" those rows in F which do not begin with P, The result
should look like this. '

PEACHES

PEARS

PLUMS 14.7




Chapter 15: BRANCHING

In Chapter 8 we created a function called ATTEND which found the aver~
age, lowest value, highest value, and the range between the lowest and
highest for any set of numbers. Chapter 9 explained all the varlous
types of functions that can be defined within the MCM/APL system. The
examples wused In both of these chapters were functlions that contained
only one or two 'lines each. They proved adequate enough to ‘explain
how functions could be defined and what the six different function
types are, but the number of lines each of them contained was hardly
répresentative of the length of functions you will be writing. Yours
ulijuprobably contain anywhere from 5 to 20 or more statements, de-
pending on their complexity and purpose. Initially, their lengths may
be due to your limited exposure to the MCM/APL system, but as you gain
experience, you will find short cuts In expressing your solutions and
thus be able to reduce the number of lines required. One of these
short cut techniques Is the ability to branch to various lines within
the function while it Is executing. : :

Types ovaranches

in all the multilined defined functions seen so far, the statements
contalined In each have been executed in a straightforward . fashion.
The contents of line 1 were computed before those of 1ine 2, which
were done before line 3, and so on to the end of the function. But,
in many computer applications, things do not always run this smoothly.
You may want to execute a certain set of statements depending on the
- prevailing conditions at the time. Or you may want to ‘'loop through"
a speciflc set of Instructions several times, changing the data and/or
the parameters slightly each time. But whatever the reason, the
branch feature of the MCM/APL system allows you to redirect the com~
puter's execution anywhere throughout the -body of your function. The
symbo! used to Indicate a branch operation .Is the right pointing arrow
+. There are two types of branches possible. One is called the con-
ditional branch and the other {s the uncondi tional branch, -
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Unconditional Branch

The term “uncondltlonal branch! means the system is to perform the
branch everytime It Is encountered. The format Iis

‘+LOCATION.

The + symbol signifies a branch Is to take place and the line location
or number to which the branch is being made appears to Its right.
This target - line is either a line number or a label. To begin with,
we will use line numbers in all examples. Labels are discussed later
on. Here Is a typical branch instruction:

If the above statement was an actual line within a function, the com-
puter would always redirect Its execution back to line 3 whenever en-
counters line 6. Below, If this line Is executed by the system, com-
putation would be automatically rerouted to line 10, as the value,
which ultimately becomes the argument of the branch function, is the
value 10 (l.e., 5xA4«2),

- [4)+5x4«2

This means you -<can Include other calculations on the same line as a
branch .Instruction.

Conditional Branch:

A Yconditional branch" |s one that may or may not take place, depend-
ing on the circumstances. Below, the function RANXK has 3 conditional
branches In 1t; one on line 1, another on line 2, and stil)l another on
line 3. The other branches you will recognize as being unconditional.
But, within these unconditional branch statements there Is something
-we have not seen before. This Is a branch to a non-existent line num-
ber. In each case It Is line 0.
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VRANK A
[1)+(0=ppd) /86
(2)+(1=ppd)/8
[3]+(28pp4)/10
(4] 'NULTIDINENSIONAL ARRAY!
[8)+0
[6])'SCALAR!
[7]+0 :
(e)'VECTOR!
[(98)+0

" [10)'NATRIX'

v

Why then are we branching to this I1lne? The reason Is quite simple.
The system has besn programed to Interpret any branches to non-
existent lines as meaning "terminate execution of the function
immpdiately." Line 0 was chosen because it will never appear In the
body, whereas soms other number mey. Actually, any integer which is
Aot a valid line numbsr will do. This rule applies to both kinds of
branches. We did see sarlier the system referred to line O as balng

"the header |ine whenever we parformed any function editing. But the

hegder 1line is not classifled as part of the function's body. There~
fore, branching to It does In fact cause termination of the function's
execution., o

Here Is how RANK works:

: RANK 86
SCALAR - '

This is what happened. When the first line of RANX was encountered,
the system first evaluated the contents between the parentheses, which
are _ : v

O0=ppd
When 4 represents the number 86, the result ?f this dperition Is a 1.
(A scalar has & renk of 0y therefore ppd results In b, and b0=0 results
l:'i ). Once this célculation Is completed out statement looks 1ike
this:

(1]+1/8

Notice the expression 1/6 Is a compression function which returns a
result of 6.
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Here It Is outside the statement:

1/6
6

This means line 1 Is reduced to 6 which Is the same as our uncondi-
tional branch. Just to retrace the execution of this line, here Is a
breakdown of the various steps:

[11+(0=ppd)/6
e g

(11> 1 /6
Na—

(1]~ 6

After evaluating line 1, the system then jumped down to line 6,
displayed the statement SCALAR, and then went onto line 7, which In-
structed the system to conclude its execution of RANK (branch to line
0).

élypw RANX ts executed again, this time using a 3 element vector as
Its argument.,

RANK 23 64 17
VECTOR

Looking back at the function RANK itself, it Is line 2 that directs
the computer down to line 8 where the statement 'VECTOR' Is located.
This meant when RANK was executed, the branch on line 1 did not occur,
but the one on line 2 did. Why? Well the comparison operation 0O=ppd
on line 1 resulted In a 0 as A represented a 3-element vector which
has a rank of 1. This meant the statement on line 1 was reduced to

(1]+»0/6

We know 0/6 always returns an empty vector result. Therefore,
whenever the system is asked to branch to an empty vector, it merely
ignores the request. For Instance,

[1]+10

causes no effect on the order Iin which the lines of the function are
" executed, The system simply goes on to line 2 and continues |Its
evaluation of RANK. Here is a breakdown of the operations as they
occured on line 1: '

[1)+(0=ppAa)/6
N

(11> 0 /6

N

11+ 10 .
(1] 15.4




Line 2 Is evaluated the same way line 1 was when A represented a
scalar. Because a compression operation Is used in all three condi-

branches and all three are comparing the rank of 4, the func-

tion RAFX ceuld have been written more concisely. Below Is a revised
definition of RANK. :

VRANX A

(1) (0 1 2=ppA)/4 6 8

(2] 'NULTIDIMENSIONAL ARRAY®
(3] +0

{4] 'SCALAR®

(5] -0

(6] 'VECTOR!

(7] »o0

(8] 'NATRIX'

v

Is an example of It In use:

RANK 2 2p\u4

Because 4 represents a 2 by 2 matrix, it has a rank of 2. Thls causes
the comparison operation within the parentheses

0 1 2=ppd

to produce a result that looks like this:

0o 0 1

.So the ixprcsslon gets reduced to this:

(1) -0 0 1/4 6 8

know that

0 01/4 6 8

gets compressed to 8, therefore the result of this statement |s

(1] »s8

and the branch s completed.
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Just make sure the numbers 4 6 8 representing the target lines of the
different branches are In the same sequence as the values 0 1 2
representing the varlous ranks of the arrays entered. This lInsures
branching is to the appropriate line.

Conditional branches can be expressed in various ways. Here are just
a few of them,

+(X op Y)W
+(X op Y)pN
+Nx1(X op Y)

The character N represents the line number or receiving target of the
successful branch, and '"op'" stands for any one of the symbols

< £ = 2 > ® V A M w ¢

“op'" could also be a user defined function which returns an explicit
result of 1 or 0.

Labels

You have just seen how the computer can be directed to any line in a
function by means of the branch arrow - ., By saying -+6 the system
automatigally goes to line 6 to resume Its exemuélon of the function.
But what happens when you do some function editing and the contents of
the original line 6 now reside on some other line? When new lines are
inserted and eld ones deleted, the system renumbers them again. to- re-
flect imy char'ges . Therefore, branching to specific line numbgrs: may
not be such a .good idea if there Is a chance the function may undergo
some alteratifns In the future. So, to avoid this posslbillty,
MCM/APLgh%s iricorporated line labels which, in effect, operate “the
same as‘variables. This means that lnstead of saying

+6
we could say

+MST
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where MST Is the label name for line 6.

To assocliate the vrecelving 1iine with a particular label, the label

‘must be the first item to appear In that 1line, and 1t must be
‘separated from the statement by a colon. Here Is a typical function

1ine containing a label:

[6]MST:TOT«TOTx.07-A%Q
Whenever this 1line is exeguted, the system will act as If MST Is not
present. But, whenever MS5T i{s referred to while the function s
executing, It will take on the value 6 or whatever line number it re-
sides on at the time.

RQre Is a function employing a label: : .

VR<PAS N
[1] Re1
(2]L2:R«(R,0)+0,R
(3] »L2xN>R[2]

‘v

| PAS -4
1 4% 6 & 1

Mathematiclans will recognize that PAS produces the coefficlents equi-
valent to (o tN)IN, Although labels act like local variables In that
they both 'become activated .and take on specifi¢ values only while the
function s executing, they are referred to as being local canstants.

- Their. valués never change throughout the execution of the function.

To check this, wrlte a function that uses labels and try to change

',thelr values.

“Poslt!onlng;OF Branches in Statements

The ‘braan symbol can. appear anywhere within an APL statémant. We

. have seen examples where 1t was the first character, now here Is one

where 1t ts positioned near the middle of a statéement.
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[7]R«(10)=X«+(0=4)/11

1f the above branch is successful, execution of the statement on line
7 is halted at the branch arrow, and Is resumed again at line 11, i f
the branch 1Is not successful, the branch function returns an empty
numeric vector result which gets assigned to the variable X. There~
fore, If the comparison (0=4) above produces a 0 result, X Is replaced
by 10 and R Is specified with a 1. |If (0zA) produces a result of 1 ,
both X and R retain their present values and execution gets rerouted
down to line 11. '

Only when the branch lInstruction Is in the middle of the statement
does it return a numeric empty vector result. If 1t is the first
character in the statement, it does not produce any result.

Summary
Branching within a defined function can be conditional or uncondition-
al. ' Unconditional branches are performed everytime they are

encountered, while <conditional ones are dependent on the prevailing
clrcumstances. Below are some typical branch Instructions:

1. Unconditional
+6
+L1
+AxB
2, Conditional
(a) multiple choice
+(L1,L2)[1+(x=Y)]
+NoL1,L2,L3

+(N,~N)/L1,L2
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(b) branch or fall through
+(N>M)/L14
+(N>M)pL1
¥(N>M)+L1
+((N>M)A(N<0))/L1
+Lix\N>M
+LAl\N>M

3. Functlion exit
+0

-

If the argument of the branch function is a vector, the branch applies
to the first element only.

(3] +6 2 10

The branch above is to 1line 6. |If the right argument is an empty
‘vector, no branching occurs

(3] w0
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Practice Exercises

1.

2.

Define a function to repeatedly flash the word '"HELLO' on the
screen. Set [JPT to 1 beforehand.

Define a function to simulate the +/ primitive for vector argu-
ments. ‘

Define a function to generate the Flblinacci series
1 1 2 3 5 8 13 21 ....

where any number in the series, except the first two, Is the sum
of the previous two.

S~
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Chapter 16: INPUT - OUTPUT

In order to be completely Interactive with its user, the MCM/70 must
have the ability to accept Input from the keyboard and display data on
the screen while In the process of carrying out calculations. The
user should be able to supply data at varlous Intervals of computation
and the computer should be able to display its results at various
stages also. To accomodate these features, two symbols have been em-
ployed. Both are used to accept Input ‘from the keyboard and to dis-
play output on the screen. But the manner In which each performs, and
the results each produces are completely different from the other.
This chapter describes these two, plus a technique for combining both
literal statements and numeric values together to form a single output
line. :

“Numeric lnput

To accept numeric Input from the screen, the quad function (] (dpper
shift.L) Is used. The function SORT illustrates.

. Somr
ENPER DATA.
0: 1.

When SORT Is executed, It flrst displays the statement ENTER DATA.

The next line It displays Is

I

O ll

Displaying the [J: |Is the system's way of Indicating It Is expecting
numeric data to be entered. The cursor accompanying this request |Is
the Input promt. It shows where the first number Is to appear on the

screen when we key it in. Upon entering our data, the screen looks
like this:

O: 20 16 21 15 17 22 18

Even though (: Is still on the screen, It Is not considered to be part

of the Input,
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Let us press the RETURN key and view the result,
15 16 17 18 ‘19 20 21
SORT looks like this:

VR+SORT
[1]'ENTER DATA.'
[2]R<D
[3]R<R[4AR)

v

Line 2 of SORT is the one containing the numeric Input request.
The quad function can also be uséd outside of user defined funétions.

6+

0: B
When we supply a value, It gets added to the 6.

g: 7
13

Here Is another:

. D_s
O: 10
7

Each time numeric input Is requested, the system signals this to the
user by displaying the [J: symbols. ‘ &

Jnput to a quad can also be In the form of an APListatémént. " L.hstead
of entering the value 10 as we did above, we could have entered 2x5 ,

g-3
O: 2xs5
7

or 8+2

0-3
8+2

(]

7
or even 6+20-~-16

0-3
6+20-16

-
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The quad evaluates 1Its Iinput as If It were an APL statement. This
means varlable names and even function names can be used as Input to
a.

Here 1Is another function using the quad to obtain Input from the user
while It Is executing. The function 7ST below selects 2 numbers at
random, displays them and expects the user to key In their product.

rsT

6x5=

0: 30
RIGHET
4x9=

O: 28
WRONG. TRY AGAIN.
4x9=

0: 36
RIGHT

2x 7=

O: sToP

Typing In STOP terminates the exercise. The function looks like this:

VrST;Q;STOP ;A
[1])sTOoP+0O1

[2]Qe2212
£31QL1]);'x';Q[2];'="
[4]+0x1ST0P=A«(]
[5)+(Anx/Q) /L8
(e]'RIGHT!

[7])»2

[8]L8:'WRONG. TRY AGAIN.'
[9])+3

v

Line & contains the numeric prompt.
Instead of typing STOP above, the right pointing arrow + could have
been entered to do the same thing. When used this way, it 1Is recog-

nized by the system to mean '"terminate the execution of this func~
tion." '
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Outgut

Besides being used to accept numeric input, the 0 Is also used to dis-
play both numeric and literal output. When wused In this way, the
specification arrow « must appear to the right of the quad.

O«A«6+7
13

13

It may also be used within calculations wlthout'havlng any affect on
the final result.

A+<7+[]+«6+7
13

20

In the function MEAN below, it Is used to display the literal string
ENTER DATA. '

VR+<MEAN
[1lR«(+/R)%pR«[Je0«'ENTER DATA'
v

By employing this output primitive, the entire function above was able
to be written on one line. :

MEAN
ENTER DATA
d: 10
5.5

One symbol on line | that Is new to you Is the ¢ (upper shift J). To
find out more about it, consult Chapter 19.
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Literal Input

To accept numeric Input from the keyboard, we use the quad symbol (.
To accept literal data, we use the quote-quad symbol [1 (upper shift
L and upper shift XK). Unlike the quad symbol which has no arguments,
the quote-quad can be used both monadically and dyadically. An ex-
ample of it being used monadically is this:

N+['"ENTER NAME. '
The system displays the argument and places the cursor at the end.
ENTER NAME. W
The system is waiting for Input, and we comply.
ENTER NAME, ERIN
By 'displaylng' the contents of N, we see that not onlyvobr Input data

has been assigned, but also the displayed output.

N
ENTER NAME. ERIN

If we wanted just the Input, we could have expressed our Initial
statement 4as’

N+12 1V ENTER NAME. '
Here Is the entire process again:

N+12+('ENTER NAME. °
ENTER NAME. W

When we enter our input,
ENTER NAME. ERIN
and press the RETURN, ¥ will be the following:

N
ERIN

Just what we want,

oN
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If there 1is no line to be displayed with the [N function, the way to
avoid having to supply one Is to key in a null or empty literal vector
as Its argument.’

Aq.m' 1]

The only thing displayed Is the cursor, prompting for input to be as~-
signed to 4.

Using the [1 monadically always places the cursor immediately after its
displayed argument to indicate were the first character of our re-
sponse Iis to appear. One thing to note is the cursor can be back-
spaced over the output section and editing can be performed on the
output.

V<['3+2=7"
3+2=7

We <can, at this stage, backspace the cursor and change the ? to the
~ character 4 by doing the following:

1. 3+2=710 original statement
2. 3+@=7 cursor backspaced to ?
3. 3+ufy the ? replaced with a &

4, press the RETURN key
After this sequence of steps, V will contain the literal'strlng'3+u=7.

» 14
3+4=7

gV
5

Instead of backspacing to do the replacement, an easier way is to use
the B dyadically. When it Is used dyadically, the left argument is a
value representing where on the display screen the cursor is to be
positioned. For instance,

4«30 34 =7
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causes the '3+ =7' to be displayed and the cursor to aﬁpgar between
the sign and the = sign Iin the form

3+l=7
| We can now enter our input and press the RETURN.
3+ufg?

What the computer has assigned to 4 Is the enter literal, including
our Input. : .

Y|
3+4=7

The left argument can be any Integer from 1 to 32. Needless to say
the applications for this function are quite extensive.

Additional Features

Remember back In Chapter 3 we saw that whenever data was supposed to
Include one or more quotation marks, two adjacent gquotes had to be
used to represent this? The following Is a typical example:

B Y«'SHE''S FOUR YEARS OLD.'

Y
SHE'S FOUR YEARS OLD.

Although this rule Is required above for obvious reasons, it does not
apply to the [ function.

Yemt
SHE'S FOUR YEARS OLD,

v
SHE'S FOUR YEARS OLD.
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Below, the quote-quad function iIn line | of QUES is used to accept re-
sponses to the accompanying question.

VQUES

[11Q1:A« 6+M'"WHAT IS THE CAPITAL OF CANADA? '
[2]+Q2x1A/'OTTAWA' =4

[3]'"WRONG. TRY AGAIN.'

(u4]+Q1

(5]Q2:'RIGHT'

v

Here it Is In use:

QUES
WHAT IS THE CAPITAL OF CANADA? TORONTO
WRONG. TRY AGAIN.
WHAT IS THE CAPITAL OF CANADA? OTTAWA
RIGHT :

I f, when executing a function that is prompting for lkteral input, you
decide you would rather not respond, there Is you can cause the system
to abandon 1its request. The following function, when executed, wil)
continually ask for input by constantly looping around lines 1 and 2,

VLOOP;A
[1]4<0"?
[2]+1
v
LOOP
STOP
HELP
[ |

Even after entering such statements as STOP agnd HELP, the function
still keeps asking for more input. The only way this loop can be
broken, other than turning off the computer, is to press the CTRL,
SHIFT, and « keys. When they are pressed in this order, and held down
until the <« key is pressed, the computer will stop its execution and

N
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display the word INTERRUPT, followed by the point of interruption on
the next line.

INTERRUPT
Loo[1] A+l

The execution of the function has now been suspended at this line.

See (ISI In Chapter 21 for more detalls on what to do wlith suspended
functions. .

Heterogeneous Output

To facilitate the displaying of'Hoth numeric and literal data on the
same line, we use the semicolon.

"THE DATA IS 31 2 3 & 5
THE DATA IS 1 2 3 & &

This feature applies mostly to output formatting that Includes both
headings and results together.

[71'TOTAL IS ';+/X
[BI'AVERAGE IS ';(+/X)+pX

Practice Exercises

1. Define a function that will display an . integer from zero to
fifteen and ask the user to spell the word., For example,

SPELL

SPELL 10

TEN

SPELL 4

FOR

WRONG. TRY AGAIN.
SPELL 4

FOUR
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Write a function to accept names of varying lengths and create a
matrix result. When all the names have been entered, signal this
to the computer by pressing the RETURN key only when it asks for
more input.

Example:

N<«ENTER
ENTER NAMES.
BUTLER G.
ATKIN B,
BRADSHAW C.
(RETURN key only)

user Input

N
BUTLER G.
ATKIN B.
BRADSHAW C.

plN
3 1

Write a function that generates two different integers between 1
and 10, and asks the user what they are. Give him three tries be-
fore telling him what they are.

Example:

GUESS

O: 2 6
NO,

g: 3 7
RIGHT, I HAVE TWO MORE.
O: 4 7
No.

O: 9 10
NO.

0:1 2

THEY ARE 3 5
d: o

A response of 0 terminates the quiz,
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Chapter 17: INNER AND OUTER PRODUCTS

As you become more proficient in expressing your data In array form,
you will discover there are several different functions and ex-
pressions which <can take these arrays and produce the same results.
Some may be written more concisely and perform more efficiently than
others, But you may find that those which look sophisticated may in
fact prove to be Impeditive to the system's performance. Alternative
methods are always great assets. The Inner and outer product func-
tions are two such alternatives which you should “consider whenever
dealing with arrays.

inner Product

How many elements are In the vector X? We determined this earlier by
employing two methods. One was simply pX and the other was +/X=X .
Both expressions produced the same results as long as X was a vector.
But If X was a scalar, the first method returned an empty vector and
the other returned a 1.

X
1 2 3 4 5 6
|
pX
6
} vector argument
+/X=X
6 N
:
p3

(btank screen)
} scalar argument
+/3=3

1

/
If we plan on using the result in any other calculations, we have to
decide which one is best suited for the task. For instance, {f the
data could be scalars as well as vectors, the +/X=X is the one to
choose. It assures us the result will always be a numeric value. But
if the data will be in vector form only, then pX Is probably more
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efficient to use. There is also a third method to consider iIn this
evaluation, To find out how many elements are In X we could use
either of the above two expressions, or this one:

X+.sX
6

This expression Is a typical inner produce statement, Read as 'X plus
dot equal X", it performs exactly the same way as +/X=X does when X is
a scalar or a vector. The primitives you use on both sides of the
dot, or decimal point must be scalar dyadics. Just to refresh vyour
memory, the symbols representing scalar dyadic functions are:

+ - x +t x[ L | ®@!! 0<cg = 2> 2V AN

Expressions such as Xi1.eX and X~,pX will not work. Below is an ex-
ample of another inner product. :

M«3 5 1
| |
Ney 2 3
[ |
N+ . xM
25

This last one is read as '"N plus dot times M,

Let us go through it a step at a time to see how it arrived at the
answer. The first operation Is

NxM
which s essentially
4 2 3x3 5 1

The products of the multiplications are

U 2 3
3 5 1
12 10 3
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These products are then summed to produce the final result.

+/12 10 3

25

Here are a few more computations using M and ¥ as arguments:

Nx, +M
196
NT.TH
5

NL.LM
1

Ne.+M
18 '
When both

scalar, Bu
rules are
vector and
rows, The
ate of the
argument.

K
10 11
12 13
14 15

L
123

L+.xX
76 82

The solution above was afrived at In the_followlng manner.,

(+/1

or

arguments

t,

if at

Iimposed.

are

For example,

any

higher

rank,

scalars or vectors, the result Is always a
least one of them has certain
If the left argument Is a 3-element

the right argument is a matrix, the matrix must have

‘three

general rule states that the dimension of the Jast coordin-

left argument must equal the flrst coordinate of the

2

3 x 10

(+/L x K[;1]) ,

12 14) , (+/1

(+/L x K[3;2])

17.3

2

3 x 11

13

15)

right



When a matrix is the left argument and a vector is the right, the num-
ber of columns In the matrix must equal the length of the vector.

pX

K+.x2 3
53 63 73

which is

(+/KC13] x 2 3) , (#/K[2;]1 x 2 3) , (+/K[3;]1 x 2 3)
If they are not equal, the following occurs:

K+.x1 2 3
LENGTH ERROR

B+.x1 2 3

The dimensions of the result are a combination ef all but the last co-
ordinate value of the left argument and all but the first coordinate
of the right argument. |In the example X+.x2 3 above, X is a 3 by 2
matrix operating on a 2-element vector. Therefore, the result is a 3-
element vector., |If It were a 4 by 2 matrix on the left, and a 2 by 3
matrix on the right, the computer would return a 4 by 3 matrix result,

A

N oW
o, FEN

B
10 15 12
17 13 16

A+ . xB
yy 41 4y
98 97 100

152 153 156
206 209 212
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This result was obtained by the following calculations:

column 1 column 2 column 3

row | | +/1 2x10 17 +/1 2x15 13 +/1 2x12 16

row 2 | +/3 u4x10 17 +/3 4x15 13 +/3 4x12 16

row 3 [ +/5 6x10 17 | +/5 6x15 13 +/5 6%x12 16

row 4 | +/7 8x10 17 +/7 8x15 13 +/7 8x12 16

If A were a 4 by 3 by 2 array and B were a 2 by 6 by 7, the result of
A+.%B would be a 4-dimensional array with coordinates of 4 by 3 by 6 by
7.

Dimensions Dimensions
of A of B

4 x 3 x 2 2 x 6 x 7

\q—-—./ \——*/

Dimensions
of Result

4 x Q x 6 x 7

_J/f ‘\/

/

Quter Product

The purpose of the generalized outer product is to allow every element
in the right argument to perform a specific operation on every element
in the left argument.

2 Yo.x3 5
6 10
12 20

Above, every element In the left vector was multiplied by every ele-
ment in the right. The expression o.x Is read as "npull dot times."
And, like the Inner product, the only primitives that can be used by
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the outer product are scalar dyadics.

ing how the computer evaluated this

Below Is an illustration show-

last example:

x 3 5
2 6| 10
4121 20

Unlike the inner product, only one
a time, and there are no dimension
ments,

YCATYo ,='"CAT!
1 0 0
0 1 0
0 0 1
The coordinates of the result are

both arguments. The result's rank
arguments,

1, the result

c
3 0 2 i
6 y 3 7
Co.+5 "1
2 Ty
5 "1
7 1
6 0
11 5 -
9 3
8 2
12 6
1 2 3 4 50,51 23 45
1 1 1 1 1
0 1 1 1 1
0 0 1 1 1
0 0 0 1 1
0 0 0 0 1

17.

scalar primitive can be employed at
restrictions placed on the argu-

a combination of the coordinates of
{s the sum of the ranks of the two

|f both arguments are 3-element vectors, which are of rank
is a 3 by 3 two dimensional

array.,




The null symbol, <, when used In this context, does not perform any
real task other than to indicate to the system that It Is to do an
outer product operation., But by Itself, the null symbol Is a primi-
tive whose use is discussed In Chapter 19,

Practice Exercises

1. For A«2 6 4 § and B+3 4 5 1, evaluate the followling:

(a) A+.xB (b) A+.+B (c) 4A-.%B
(d) Be.x4 (e) Al.LB. _ (f) AL.TB
(9) 4e.48 ~ (h) ae.xB (1) 4e.4B

2. Restructure 4 and B Into 2 by 2 matrices and perform question 1
again, L

3.(a) Joe works a regular 40 hours shift each week. Periodically, he
works a few hours overtime during the week and on Sundays. His
hourly pay Is rated into the following categories: '

regular pay 3.50
overt ime h,75
Sundays 6.90

During one week, he logged the fellowing hours:
regular hours 40
overtime 7
~Sunday 8
" His weekly pay could either be calculated by
/40 7 8x3.5 4.75 6.9
or

40 7 8+.%3.5 4,75 6.9
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For the entire month, Joe's time sheet loeked like this:

(b)

week 1 week 2 week 3 week 4

regular 4o 4o 35 40
overtime 7 8 b 6
Sunday 8 2 0 10

Calculate his wages for each week.

Frank and John work In the same shop as Joe. Thelr pay rates,
along with Joe's, are listed below.

Joé Frank John

regular pay 3.50 3.75 3.25
overtime 4,75 5.05 L.s50
Sunday 6.90 7.25 6.35

They too worked the same number of hours as Joe did during the
four weeks., Calculate their weekly pay using the 1inner product
method. .

Use the outer product function to develop the times table for the
integers 1 to 6.
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Chapter 18: STILL MORE MIXED FUNCTIONS

All the primitive functions In HCM/APL are divided Into two groups -
scalar and mixed. The scalar functions perform operations that are
predominantly algebraically oriented. Such computations as addition,
multiplication and division are all gesks of scalars. So too are the
trigonometric calculations, logarlthms, factorlals, Boolean functions,
and numerical comparisons tless than, equal to, etc.). With the ex-
ceptions of the equal and not equal functions, they all require their
arguments to be numerlc and they all produce numerical results. Mixed
functions, on the other hand, are mostly concerned with the actual
management of data. They can determine the size, shape and rank of
any array, plus retrieve any of Its elements on request. They can
generate data, drop data and even join two sets of data together. All
the varlous chores these functions perform help to Increase the power
and flexibility of the MCM/70 with an ease of use unknown In any other
language. In total, there are 22 mixed functions available, 14 of
which have already been discussed and the remaining 8 are coyered 1In
this chapter and the next.

Rotate

The symbol to represent the rotate function is ¢ (upper shift O over-
struck with upper shift M). The functlion's entlire syntax Is written
as X9r. If X is a single integer value and Y Is a vector, then X¢Y
performs a cyclic rotation of Y. For example: .

191 2 3 4 5
2 3 4 5 1

Above, the function caused the right argument to be rotated by one po-
sition from front to back, with the very first number belng shifted to
the back.  Here Is a schematic il1lustrating what happened:

Argument: Operation : Result:




To rotate the first two, the expression would look like this:

261 2 3 4 5
3 4 5 1 2

And here is its schematic:

Argument: Operation: | Result:

05505 N 000 QIR ©00D N
@y

In the above two examples the system rotated the elements in the right
argument, one at a time, in a front-to-back direction according to the
number stated In the left argument. If the left argument is a
negative amount, the direction of rotation is reversed. :

261 2 3 4 5
¥ 5 1 2 3

Argument: Operation: Result:

95905 S 0O 00 WP 5 5DD0N

Here are two more:

T1d1 2 3 4 S
5 1 2 3 u

“3¢61 2 3 4 5
3 4 5 1 2

Literals may also be rotated.

"5 'NOONAFTER'
AFTERNOON

4¢'NOONAFTER'
AFTERNOON
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If the right argument Is an array of rank >1, and the left argument is

a single value, the columns of the array are rotated.

. A+«3 4pr112
A
1 2 3 4
5 6 vi 8
g 10 11 12
1644
2 3 n 1
6 7 8 5
10 11 12 9

This same operation could have been expressed as

19[2]4
2 3 4 1
6 7 8 5

10 11 12 9

The [2] causes the rotation to be done along the second coordinate
which is the columns in this case anyway. To produce a cyclic rota-
tion of the rows of A, we direct the system to the first coordinate.

140114
5 6 7 8
9 10 11 12
1 2 3 u

T1401]4
9 10 11 12
1 2 3 b
5 6 7 8

We have run across this coordinate pointing feature before. Flirst
with catenate, then with reduction and scan, and then with compression
and expansion. In all five Instances, there were additional symbo!ls
to refer specifically to the first coordinate, namely ;3 # and %. So
too Iis there one to represent coordinate rotation. It Is the large
circle o overstruck with the minus sign.
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- M«3 S5p'EATBLACKQUUNTGR'

M
EATBL
ACKQU
UNTGR

oM
BLEAT
QUACK
GRUNT

20 20M
GRUNT
BLEAT
QUACK

Instances arise when It may not be desirous to have all the planes,
rows, and columns of an array rotated by the same amount. You may
want to rotate specific rows or columns, while the others remain as
they are. Or there may be applications requiring rotation to be done
by varying degrees. For instance,
the columns of A by one position and rotate the second elements by two
positions while the third set

expression would look like this:

1 2 094
2 3 b 1
7 8 5 6
9 10 11 12

The same is true for rows.

01 2 304
1 6 11 4
5 10 3 8
9 2 7 12

18.
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Reversal

The symbol ¢ when used monadically reverses the order of

gument If it Is a vector. (Scalars are not affected)

o4 3 2 1
1 2 3 &

Q'DEW'
WED

$'EDIT?
TIDE

When the argument

2«2 3 upr24y

|
z
1 2 3
5 6 7 8
9 10 11 12

13 1y 15 16
17 18 19 20
21 22 23 24

Y
) 3 2 1
8 7 6 5

12 11 10 9

16 15 14 13
20 19 18 17
24 23 22 21

To reverse other coordinates, simply direct the system to the proper
dimension. Reversal of the rows of 2:

¢(2]2Z
9 10 11 12
5 6 7 8
1 2 3 4

21 22 23 24
17 18 19 20
13 14 15 16

Is of greater rank,

18.5
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Reversal of 2Z's planes:

6f1]12z
13 14 15 16
17 18. 19 20
21 22 23 24

1 2 3 4

5 6 7 8

9 10 11 12
-or just,
ez

13 14 15 16
17 is 19 20
21 22 23 24

1 2 3 4
5 6 7 8
9 10 11 12

Monadic Transpose

The last function to be discussed that |Is associated with array

‘restructuring, Is the transpose. Its purpose 1Is to transpose or-

interchange the elements within an array. This !Involves switching the
rows and columns around and, as we will see later, switching the ele-
ments between various planes. But for now we will deal with rows and
columns,

The symbol wused by the transpose function is § (upper shift 0 over-
struck with the reverse solidus). When this function s used
monadically with a matrix argument, it reshuffles the rows and columns
around so that row | of the argument becomes column 1 of the result,
row 2 becomes colmun 2 and so on. Here is an example:
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M
1 2 3
i 5 6

oM
1 y
2 5
3 6

L

The contents of the 2 by 3 array M are rearranged into a 3 by 2 re-
sult.,

Here is another.

N
0IL
GNU
RUN
ERG
SEE

o
OGRES
INURE
LUNGE

If the arrays are of any greater rank, the function is extended to ex-
change the elements in all the dimensions,

X«2 3 4pr124

(Yo s, 3
~
N o

13 iy 15 le
17 is 19 20
21 22 23 2k
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O«T+Qx

1 13
5 17
] 21
2 14
6 18
10 22
L 16
8 20
12 24
T
4y 3 2

The dimensions of the result are the reversal of those of the
argument. Notice column 1 (1 5 9) In plane 1! of 4 Is column 1 In
plane 1 of T and column 1 In plane 2 of A becomes column 2 in plane 1
of . This procedure Is repeated for every column of 4. Array re-
structuring of this type Is described In greater detail in the next
section on dyadic transpose., So before you think of rejecting this
function as being too complicated for your applications, read on a
little further.

Dyadic Transpose

As we have Just seen, the monadic transpose reverses the coordinates
of its argument when It exchanges the elements. This can also be ac-
complished by using the transpose symbol & In Its dyadic syntax.

M+«2 3p16
H
M
1 2 3
y 5 6
2 109M
1 Y
2 5
3 6
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The 1left argument above, 2 1, refers to the order In which the dimen=-
sions are to appear In the result -~ the second dimension (columns)
first, and the first dimension (rows) second. The elements within the
result are also arranged accordingly. This 1Is lIdentical to the
monadic transpose, as all we did was reverse the coordiates. But when
dealing with multidimensional arrays, the interchange of their con-
tents In this set pattern may not be desired. In Instances where this
Is the case, you will find the dyadic transpose can accomplish this by
stating, In 1its left argument, the specific positions within the re-
sult the argument's original coordinates are to be placed. Examine
the following example:

A+3 2 U4pr2y4
|
A
1 2 3 4
6 77 8

9 10 11 12
13 iy 15 16

17 18 19 20
21 22 23 24

D«R<«3 1 284

1 9 17
2 10 is
3 11 19
4 12 20
5 13 21
6 14 22
7 15 23
8 16 2y
2 4 3

The left argument 3 1 2 directed the system to g¢onstruct an array out .
of the coordinates and values of A4 such that

coordinate 1 of A becomes coordinate 3 of R

coordinate 2 of A becomes coordinate 1 of R
coordinate 3 of 4 becomes coordinate 2 of R
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This means the 3 _x 2 x 4 argument

becomes a 2 x 4 x 3 result

Along with the redimensioning, there was also the relocgtion of the
elements. For example, the value 7 which appears In plane 1, row::2,

column 3 (or [132:;3]) of A was Inserted into plane 2, row 3, column . i
(or [2-3 1]) of R The general algorithm for th!s transpo§& 1s
AlX;Y;2] with the coordinates of-4 belng relocated In R[!;z X3 whire'
the function is (Y,2 X)QA.

Another way to Interpret this Is to take the coordinltos of both 4. and‘

R, as was done above, and determine from them how the - i!éﬁents wore’
rearranged.

plane row column
A

37. 2 4 (coordinates of 4)

T Ty (coordinates of R)
o ’ AL

The arrows Indicate where the elements were moved to. The arrow
runnipg from plapg coordinate of A to the columns coordinate of R in-
dicates the cébnients of plane | of A4 are the same ones appearing In
column 1 of R, _Those ‘TR plane 2 of 4 are also In columnv42j of R,
Plane 3 of A holds the sé 4¢ Items as column 3 of R. re B

The’ arrow going from ‘the rows coordinate of 4 to the planes coordlnato
of R shows that the contents of each of the rows In 4 are identleal to
the respective planes of R. All the numbers that appear Iin.row V! of
each of the planes of A also appear in plane 1 of R, All the “contents
of the three row 2's of 4 are In plane 2 of R. The contents of column
1 (l.e., 1 5 9 13 17 21) In 4 are the same as those in row 1 of R be-
cause, as the “heto-4" arrow above indicates, the contents of all the
columns of A4 appear In the respective rows of R.

Here are some more examples. See If you can determine how each ele-

ment in the argument was assigned Its relative location within the re-
sult.
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0«S+3 2 184

1 9 17
5 13 21
2 10 18
6 1y 22
3 11 i¢
7 15 23
) 12 20
8 16 24
. pS

4 2 3

One hint on this last one. The rows are not Included iIn the finter=
change as the 2 In the left argument 3 2 1 Is the second element.

Here is another:

O«T+«2 3 184
9 13
17 21
2 6
10 14
18 22
3 7
11 15
19 23
i 8
12 16
20 24

pT
4 3 2

The result of a dyadic transposé need not always be of the same rank
as the argument. For example, a matrix result can be created from
A by the following means:
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(JeM+2 2 184

1 13
2 1k
3 15
4 16
oM
B2
O«Ne1 1 204
1 2 3 M

13 14 1§ 16

- oN
2 4
The rank of the rosult s equal to'tho largout value contalned in the
left argument. ' , : :

f/l 12
9 _

To determine the major dlagonal of an array, the left argument Is set
to all 1's, Below Is a natrlx whos. major dliagonal is & 10 18.

P

20 17 .
:\\3 52
19 13 3

Here.ls how ¢ is found:

1 14P
6 10 i6

This 1last result Is a vector becawss the largest value in the left
argument Is 1.

One final note on the left srgument. It must always be a permutation
vector., This means it can be 1 1 2 0r 1 2 20r 12 30r 212 , but
not 3 33 or 23 30r 183, And the number of elements It contains
must equal the rank of the right argument.
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Practice Exercises

LI

2,

For A«18 , B+3 2p16 , and C«2 3 2p10+112 evaluate the following:

(a) ¢4 (b} ¢¢4 (¢) o3

(d) (118 - (e) eB | (f) 294

(g) ~“244 ~(h) 2¢B (1) 2eB

(J) ~2¢8 (k) T2eB (1) ~2072¢B
(m) dc | (n) ec (o) oL21cC

(p) 17168 (a) o0 1 2¢B. (r) (2 3016)¢C

Using the same variables defined 1In question 1, execute these
statements: :

(a) &4 (b) 194 _ (e) 2 188
C(d) 8B () 3218c (f) 11 18¢

(g) 1 18B - (h) p1 108 (1) 12 28¢

(J) 2 2 18¢c coo (k) 11 20¢ (1) 1 2 3xc

The scan function performs from right to left.

+\1 2 3 4
10 9 7 4

This means If we want to evaluate a series of numbers by using the
scan, we have to remember to enter them in reverse order,

+\4 3 2 1
10 6 3 1 )
and read thé result in reverse to what w@fcre ﬁbrmally‘wsed to.
An easy-way to avoid all this is to employ the ¢ function to do
both of these operations for us.

d+\¢1 2 3 4
1 3 6 10,

’Qhat‘ would be the expression for sum scanning the rows of a

matrix?
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h.

How can we multiply a vector of numbers to each of the rows In a
matrix? With a vector of

5 10 20

and a matrix of

1 2 3
4 5 6
7 8 9

how can we produée a result of

5 20 60
20 50 120
35 80 180

There 1is no one function In the system that can do thls.v There-
fg;e, we must manufacture one. By using both the outer product
apd the transpose functions, we can complete out task. First, let
us. ass%gn the two arguments to variable names. .
. C Ve§' 10 20

Me3 8019

Bere Is &he statement required to multlply V to each of the row qf

.M

g 2 28Me,
5 29 60
20 50 120
35 80 180

“?'9 Jﬁ Is for the columns:

12 19Me.xV
40 50 60

140 160 180

If V is the left argument, and M Is the right, row multiplication

2 I 29Ve ,xM
s 20 860

. 20 50 120

35 80 180
18.14




Columns multiplication Is

11 28Ve . xM
5 10 15
40 50 60
140 160 180

Try other outer product

functions such as + - ¢+ and other left

arguments to the transpose to see the results that are obtained.
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Chapter 19: THE REMAINING MIXED FUNCTIONS

To complete the list of mixed functions available on the MCM/70, this
chapter describes the remaining four. The flirst two deal with number-
ing systems and how to convert from one to the other. The third func~
tion, called the null, shows how two or more unrelated data types can
appear In the same statement without one interfering with the other.
The last function, the execute, illustrates how literal data can be
converted to numerics and how characters can become valid variable
names. At the end of the chapter, there Is a brief summary listing of
all the mixed functions found within MCM/APL. :

Base Value (Decode)

The base value or decode function i (upper shift B) has a syntax
of X1Y and is used to convert a vector of values which are contained
in Y from the numbering system expressed by X to another. An example
would be changing binary numbers (base 2) to decimals (base 10).

210 1 0 0 1
9

211 0 1
5

2110 0
y

In cases where the numbering system has 'welghted! measurements, such
as yards, feet, and Inches, these weights are specified In the left
argument. ‘

1 3 12114 2 7
538

The above example determined how many inches there are In 14 yards, 2
feet, and 7 inches. The left argument is called a radix vector.- - It
states the relationship between each of Its elements (there are 12 In-
ches In a foot and 3 feet iIn a yard).
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How many seconds are there In 8 hours, 45 minutes and 16 seconds?

1 60 6018 45 16
31516 o -

The radix vector indicates to the system that there are 60 seconds In

a minute, 60 minutes in an hour. |If days were involved, the 1 would
be changed to 24 to reflect that there are 24 hours In a day.

How many pints are there in 2 gallons, 3 quarts, and 1 pint?

14212 31

This last function was solved by the following process:

Step 1
the number of pints in one gallon: x/4 2 or 8
the number of pints In one quart: x/2 or 2
the number of pints in one pint: x/ or 1

The first element In the left argument Is not used by the system for
anything other than to balance out the number of elements In each
argument. : '

Step 2

+/8 2 1x2 3 1
23

For those Interested in polynomial evaluations, the decode function
will be of some help. For Instance, to solve the equatlion

ux2 + 2X + 1

where X equals' 2, the solution Is be expressed In the following man-
ner: '

244 2 3
21

. The value for X Is the left argument and the coefficients of the poly-

nomial are the right. Here Is the same polynomial evaluated again,
this time with X taking on the value 3. : ' _

i 2 1
43
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Representation (Encode)

The representation or encode function T (upper shift ¥) is the lInverse
of the decode. It "breaks up'" Its right argument according to the
values contained in the left. v : : :

How many days, hours; minutes and ieconds are there In 32056 seconds?

1 24 60 60T32056
0 8 54 1686

What is the binary notation for the decimal! value 7?

(5p2)77
0O 0 1 1 1

How many yards, feet and Inches are there In 436 inches?

1760 3 12t436
12 0 &

The answer to this last one was arrived at'by the following process:

1. The last element of the left argument (12) was divided Into
436 to produce a quotient of 36 and a remainder of b, This
4 became the last element In the answer.

2. The quotient 36 was then divided by the next element In the
left argument (3) ylelding a quotient of 12 and a remainder
of 0, the second element In the answer,

3. The system then dlvided the 12 by 1760 to produce a quotient
of 0 and a remainder of 12, the first element In the answer.

Null

Sgam——

We saw earlier where the null symbol o (upper shift J) was part of the
outer product function. It performed no real task other than to Indi-
cate to the system that an outer product operation was being request-

ed. But when used by itself, It does do a unique operation. The syn~
tax of the null function Is

KoY

19.3




and its duty Is to ignore Y. This may seem strange at first glance,
so let us have a closer look. {In the following expression, two as-
signments are taking place. 4 Is assigned a numerlc matrix and B is
assigned a literal vector. o

. A+«2 2p14oB«+'BOOK!

The null function makes this possible on one line.

A
1 2
3 y

B
BOOK

p4d
2 2

pB
y

By wusing the null, the number of lines a function may have can be re-
duced. This can result in a decrease in execution time whenever the
function is evoked. Here is a portion of a function without the null.

*

[4lI«0 0
[5]J«'ENTER DATA.!
[6]K«2 3p16

And here it Is with the null:

[4]I«0 OoJ«'ENTER DATA.'oK+2 3p16
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The time required to execute the entire function is reduced, due to
the elimination of certain '"housekeeping' duties that would normally
be performed as the system completes its evaluation of a line. Such
things as checking to see |f any Intermediate results have to be
erased and the updating of the [JLC variable must always be done before
the system Is able to proceed to the next line. Therefore, by reduc-
Ing the number of lines, we can also reduce execution time. One addl-
tlonal side affect is saving on memory space, as each 1line number
takes up approximately 9 bytes of available space.

Execute (Unquote)

The symbol used to denote the execute or unquote function Is g (upper
shift B overstruck with upper shift J). Defined as & monadic func-
tion, the execute's main purpose Is to unquote and execute the literal
contents of Its argqument.

e'2+42!

4

. A<e'10x6!
A

60

It treats its argument as If it were as APL statement itself.

C«l1 2 3
[ |

Deg ' (!
|

D
1 2 3

This primitive 1Is wused mostly Iin defined functions that are inter-
active with the user. Data that is normally numeric 1Is Instead ac-
cepted as literal text so that the defined function can analyse it be-
fore turning It into Its numerical equivalent., A mathematical drill
is a good application area for this function. |f the drill uses the
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quad function [] to accept answers to |Its questions, the user can
simply retype the question as his response to obtain the correct re-
sult. For instance, suppose there 1Is a function called TST which
- selects numbers at random and asks for their products. :

TST
| WHAT IS 2x3

0: B

Instead of typing In 6, we could Just as easily enter 2x3 because, as
you will recall, the quad function evaluates the input as If |t were
an APL statement before it releases It for further use. :

A<
-0: 2x3

A
6

Therefore, It 1Is best to accept all input In literal form, scan for
things like 2x3, and If satisfied that the data entered |s in suitable
form, use the execute function to transform it Into Its numerical

equivalent. You will discover many areas where this function can be
Used. . ' . !
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Summarz

This draws to an end the descriptions of all the primitive functions
that exist within the MCM/70 system. As a brief review, here Is a
list of all the mixed functions we have seen:

Fup;tlon Meaning
pY Dimension of Y
XoY Reshape Y to have dimension(s) X
194 First Y consecutive Integers from origin (1 or 0)
Xy First location(s) of Y within vector X
x[Y] Yth element(s) of X
- Xe¢X Membership of X in Y :
xrY Representation of Y In number system X
 §4 Value of the representation Y In number system X
X2y . "X integers selected randomly without replacement from 1 to Y
HIN]Y Reversal along the Nth dimension of Y .
ey Reversal along the first dimension of Y
XolNly Rotation by X along the Nth dimension of Y .
xay Rotation by X along the first dimension of Y
%g Transpose Y :
by } Transpose Y according to X
Yo Ravel Y (make Y a vector)
X, (N1Y Catenate Y to the Nth dimension of X
XzX Catenate Y to the first dimension of X
X+ Y ‘Take first or last |X elements of Y as X is + or
XY . Drop first or last |X elements of Y as X Is + op™ .= -
Ay Indices of values of the vector Y srrted: In ascending sequence
144 Indices of values of the vector Y sarted in descendinyg sequence
Xo¥ Tghore . Y o

2Y  “ Execute the literal vector Y as an AL statemqnf

Practice Exerclises

1. Using the decode function, solve the expression 5X2+10X+7 where
X equals 2.
2. How many Inches are there In 2 yards, 2 feet, 6 Inches?

3. How many yards, feet, and Inches are there In 102 Inches?
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Write an APL function that will ask addition and subtraction ques-

tions and except the answer in Its literal

form.
position of the unknown 1In each question.

a+u=f]
742
B 2:=5

19.8

Vary the

For example, the
following expressions should be typical displays of the

function:



Chapter 20: ' ERROR REPORTS

Whenever the system is asked to execute an APL statement, It does so
immediately. This is assuming of course that It can. Things such as
misspelled variable or function names, forgotten numbers, or even in-
sufficient memory space can block the system from carrying out Its
tasks. When this happens, the system suspends Its execution and dis~
plays for you the type of problem It Is encountering. This display 1Is
known as an error report. Here is a typical error report:

DOMAIN ERROR  error type
As6x19.5 ~ erroneous text

On the second line, the cursor indicates which function |s expér]enc-
ing the problem. Here is another: '

LENGTH ERROR
A 3¢+6 5 7

The cursor |Is positioned on the flrst character-assoclaﬁéd with the
faulty function.

The report is usually two lines long, but it can be more. its length

depends on the type of function in error. |If It Is the execute, the.
report is three lines long. Here Is what it looks like If the expres=’

sion 2'2+' |s entered:

SYNTAX ERROR
<l

B2+

If the error occurs within a defined function, the system lpcludes the
function's name and the line number where suspension occured. Here .ls

a functlzn called TIC which has encountered an undefined varlable name
on line &:

VALUE ERROR
TICL4] Bx6.2

If the line containing the error exceeds thirty-two characters In
length, the system displays the portion with the error only.

There are nine different types of errors that can occur. The complete
list, along with some of the reasons for their occurances, follows. .
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Domain Error

A DOMAIN ERROR occurs If at least one of the arguments used I|s outside
the predefined limits of the function. Dividing by zero, catenating a
literal to a numeric, and using a noninteger value where one Is re-
quired, are all examples of function domains being exceeded. '

. 640
DOMAIN ERROR
A+o

'SUN = ',2
DOMAIN ERROR
Bsuw = 1,2

16.5

DOMAIN ERROR
6.5

index Error

if an attempt Is made to Index a non-existent coordinate of an array,
the system will respond with an INDEX ERROR.

A+«7 8 9

H
AL12]
INDEX ERROR

Bi2]
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Length Errqr

Trying tb‘porform an operation on two arrays which have the same rank
but nonconformable dimensioss, causes a LENGTH ERROR. Examples are:

1 5 346 2 M
LENGTH ERROR
B 3+6 2 4
2: A«2 3p'BOXY0P!
B - |
A
Box
TOP |
_ Beu 2p'SENDTHIS'®
N
o B
SE.
Np
T8 -
LENGTH ERROR

B4

Rangg'srror

A RANGE ERROR is displayed whenever an attempt is made to.create a
number that cannot be represented by the MEM/70. The  concept of
Infinfty and imaginary numbers are subject to this message.” Included
here are also those numbers which lie outside the span of numbers from
~ 7.237005577E75 to 7.237005577E75.

10£100
RANGE ERROR

FloEio00
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23E16x17E60
RANGE ERROR
B3E16x17E60

0/10
RANGE ERROR

B/

This last example is an attempt to determine the identity element of
the trigonometric function, while one does not exist.

Rank Error

If a certain function expects its arguments to be of conformable
ranks, but they are not, a RANK ERROR will occur. Trying to add a
vector to a matrix evokes this error.

3 4+2 2014
RANK ERROR
U+2 2p14

Specifying the wrong number of coordinates when performing an indexing
~function will terminate with the same result.

A«1 2 3

AC2;3]
RANK ERROR

B2;3]
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Syntax Error

A statement which Is grammatically Incorrett, in APL terms, Invokes
8 SYNTAX ERROR response. Some of the more common causes are:

Missing arguments

2+
SYNTAX ERROR

] - | '
Missing operators

8(6)
SYNTAX ERROR

Bs)

In traditional mathematics, this expression could mean the
8 and the 6 are to be multiplied together. But all operations
must be stated explicitly In MCM/APL.

Unbalanced parentheses

((2+¢B)[B»X
SYNTAX ERROR
B(2¢B)Bex

Two Jjuxtaposed variables

A+1
|

B+2
|

A B

SYNTAX ERROR

As

Invalid header line

VI 10
SYNTAX ERROR

Br 10

If the header looks syntactically correct, check for the pre-
sence of a variable of the same name as that In the header.

20.5




Tape Error

If the system is physically unable to read from or write onto the tape
cassette, it will indicate this by displaying a TAPE ERROR message,

Some of‘the prbbablg causes are:
1. Cassette not méunted prbperly
2. The write enable cover Is missing
3. Faulty tape |

See Appendik B for more details on how tapes should be mounted and
used, plus additional reasons for TAPE ERROR conditions.

Valuq Errqr

A .VAEUE ERROR indicates reference s pelng made to a variable that

- does not exist.

6B
VALUE ERROR
sxll S

Th§ above error condition resulted due to one of the three following
reasons : - : : . e

1: B Is the name of a variable thgt_l; n¢t currently residing In

the workspace
2: the name of ﬁhg variabte 1s gtsspélled

3: B Is the name of a defined fﬁnctipn which has not produced an
explicit ;stlt : '
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Workspace Full

When the system runs out of available workspace in which to store its
data, or perform Its tasks, It displays a WS FULL error message., The
amount of workspace available 1in the basic MCM/70 is approximately
1,500 bytes. This is referred to as the '"2K model." The K stands for
kilo. Therefore, 2K means 2,000 bytes, (The missing 500 some odd
bytes is used by the system functions and variables.)

Options of U4K and BK byte workspaces are offered as well. The unit
can also have one or two built-in tape cassette drives, with each
cassette mounted holding approximately 110,000 bytes of information.
Therefore, the limit that must be reached before thls error condition
occurs |s dependent on the amount of workspace available. Basically,
every operation must take place within the '"main" memory, {.e., that
portion which is not on tape.

A+100 100 100 100 100 100p7.8
WS PULL
A+«foo 100 100 100 100 100p7.8

To estimate the amount of storage area your data needs, the byte
requirements for all the different data types that can be entered are
listed below,

any literal character 1 byte
any Integer from 0 to 127 1 byte
any integer from 128 to 32,767 2 bytes
any integer from 32,768 to 2,147,483,647 4 bytes
any integer above 2,147,483,647 8 bytes
and real or floating-point numbers 8 bytes

Negative values require the same amount of storage space as their
positive equivalents.
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Chapter 21: SYSTEM FUNCTIONS AND VARIABLES

Once you begin defining variables and writing your own functions, you
will have to learn how to manage your workspace properly to insure op-
timum wusage of the memory space avallable. To do this, you need a
means of communicating with the system, not only to find out what Is
in the workspace but also to Ingtruct It In organizing its contents In
some orderly fashlion. You may also want to change some of the basic
assumptions the system has made In regards to its environment. These
include such things as the number of signiflicant digits shown for each
value dlSplgyed on the screen; the length of time each line Is dis-
played; and {he origin used by many of the APL primitive functions.

Two types of vehlcles have been developed to enable you to both com-
municate with, and to manage the contents of the workand some of the
aspects of the MCM/APL system [tself. One is called system functions
and the other Is called system variables. Both of these rather ab~-
stract objects are distingulishable from other defined functions and
variables we are used to, by the fact that each of their names begins
with the quad symbol (0. These are the only instances where this sym-
bol may be used to form the name of any of the workspace contents. In
total there are five system functions and eight system variables, al}!
of which are described In this chapter.

System Functions

Here . Is a list of the five system functions predefined In the MCM/APL
system- .

Name ' Meaning
Orx Expunge or erase one or more specific objects from

the workspace.

OrFN List the names of the functions currently reslding
in the workspace.

gor Terminate the ssssion.
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ava List the ‘names of the variables currently residlng
in the workquce.

owe Clear the antire contents of the workspaée:
A1l of these functions produce explicit results and all, with the ex-
ception of FX, are defined as being niladic functions - meaning they
require ne arguments, For the one that does, the [EX functlion, Its

syntax |s

DEX 4

b 4

where A4 Is a literal containing the name, or names of the Item(s) to .

be erased. For Instance, assume we have three defined functions
called AGE, FND, and T, and four variables, called 70T, PI, 4, and Q1
presently. deflned in the workspace. We can quickly verify this by
g¢xecuting both the [OFN and (VA functions.

4GE - -
FRD
r

0Ov4
A
Pr
Q1
ror

Notice the result obtained. by executing esch functlon *Is a 2-

dimensional array, with each row containing the name of a function’ or,
vtay_the case of [JVA, the name of a variable. The results wil) always.

€ 4 columns, but the number of rows Is dependent on the number “of
‘nimes lnvolved. :

To erase one of these objects, we must enclose its name in quotes.

OEX *FND'

The above expression just erased FND from memory. Now when we dlsplay
the names of the functions present, we get the following:

Orw

AGE
T
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If we wish to erase more than one item, their names must be separated
from one another In the right argument by at least one space.

Z«'AGE TOT!

|
DEX 2
N
OFN
T
ova
A
Q1
PI

They can even be In matrix form.

OEX 2 up'A P !

Which means the output from both [OJFN and (VA can be used as Input
to OFX.

Actually, the argument can be of any rank up to 32, with each row con-
taining an object's name. ' B

If we want to erase all the contents of the workspace, we could type
either

OEx OFN and Oex QOva
or

OEX OFN,[110VA
or simply

Owc
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The [WC function clears everything from the workspace, plus it reini-
tializes all the system functions and variables to their original set-
tings. Parameters such as index origin, state Indicator and random
link are all set back to the values they contained at the beginning of
the session, '

If we execute either the [OFN or the (OVA function in a clear workspaée,
the results will always be empty 0 by 4 arrays.

awe _

MCM/APL indicates a clear workspace
oOFN |

0 4
VA

0O 4

The last system function to be discussed Is the JOF function. We saw
its purpose in Chapter .1, One thing to remember when using It is that
everything presently defined in memory vanishes immediately after this
function is evoked. |f your computer has a tape cassette, the system
will remain active long enough to store all the contents onto the tape
before it complies with the OOF request. This Is to guard against any
accidental termination and to assure that all of your data has been
safely stored on the cassette.

When the system has completed Iits '"housekeeping' and has in fact

"signed off'", all electrical power flow within the MCM/70 1Is turned
off. It remains off until the START key is pressed.

System Variables

System variables provide us with a means of altering certain aspects
of the MCM/APL system which are preset by the system at start up time.
Here is a list of the ones available, along with a brief description
of their uses: '
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Name Meaning

gcr Comparison tolerance
gro Index origin

arnc Line counter

OppP Print precision

grr Print time

ORL Random 1ink

asr State indicator

OwWA Workspace available

Comparison Tolerance

The first one on the list, [0CT, Is used In conjunction with the rela-
tional primitives < < = 2 > =« and the maximum [ and minimum L func-
tions. When you are comparing two numbers according to their re-
spective magnitudes, the computer must, at some point, set a limit on
the accuracy to which the comparison is being made. For instance, the
following statement returns a 0 result If It is conducted Iin a clear
workspace. : o

2=2.000000001
0

The wvalue 2 is not equal to 2.000000001, but It is very close. |If we
inserted a few more zeros, the system would eventually say they were
equal. But Iinstead of doing that, we could Increase the compar.ison
tolerance level of the system to a point high enough that it will as-
sume that values such as the two above are In fact equal. Before we
do this, let us find out what Its present setting Is,.
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gcr
n

To better wunderstand what this number represents, we had better look
again at our definition of a byte. We saw earlier that the amount of
workspace area -Is measured In bytes. A byte Is like an inch. It Is
used in the computer Industry as a unit of measurement to determine
memory size. Instead of saying the computer has so many square inches
of memory, we say it has so many bytes of memory. And the number ef
bytes that. can be contained in 1 square inch is increasing all the
time. Even though a byte Is used as a unit of measurement, it, 1ike
the inch, can be broken down even further. :

One byte 1in the MCM/70 is composed of 8 blts. A bit is the lowest
possible measurement unit. Therefore, a character which requires 4
byte of storage space could also be said to require 8 bits. Andvﬁum-
bers which require 8 bytes of memory could be thought of as needing 64
bits (8 bytes x 8 bits each). But how does all this relate to the
0OCT variable? Well, when calculations (including comparisons) are
performed by the MCM/70, they are done to a degree of accuracy equal
to sixteen significant digits. In the case of the relatlional func-
tions, and ceiling [ and floor L, the system allows for a little '"fuzz
factor" or approximation tolerance to be permitted In its evaluation.
Remember the [ICT variable contained the value 47 This 4 represents
the number of groups of 4 bits it will ignore In 1its evaluation.
Therefore, - in a clear workspace, the system neglects to Include the
last 16 bits (4 groups of 4 bit quantities) In all of its comparisons.
If you wanted to eliminate the "“fuzz factor' entirely and obtafn the
most precise comparison possible, you would respecify [OCT to have the
value 0, ‘ '

(JCT<0
[

1234567890123456=1234567890123457
0.

By increasing the tolerance a little, the system can be made to
believe these two numbers above are equal. .

gcre2
|

1234567890123u456=1234567890123457
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As we further increase the tolerance, so too are we further increasing
our level of acceptance of various comparisons. The highest tolerance
level we can have is 13. Here It Is set to this level and, as you can
see from the ensuing calculations, its effects are expressed by the
results,

0cr+13
2=2.1
1
222,01
1
2=2.0001
1
f2.0001
2

So, depending on the precision required, we can adjust the comparison
tolerance level to suit the need.

Index Origin

For those who prefer the origin of their numbering systems to be 0 in-

stead of the assumed setting of 1, the [JI0O variable has been Iimple~-
mented. The affects of changing this parameter are experienced by all
the functions that refer to it when calculating their results. Such

functions as 1Y and ?Y fall into this category.

dro<«o

[ |
15

0 1 3 4
?1

0
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A1l indexing calculations are also.included.
all rectangular arrays are decremented by one in an origin zero

ronment,

A+6 10 2 3.4 7

]

Al0]
6

AL3]
3.4

This |Is also carried over to other primitives which perform their
computations along specific coordinates of arrays.

M+«3 4p112

+/(0IN
12 15 18 21
‘ +/C1)M
6 22 38
0 19M
0 4 8
1 5 9
2 6 10
3 7 11
16(01M
y 5 6 K
8 9 10 11
0 1 2 3
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Line Counter and State Indicator

There are three system variables to which you are unable to specify
values. Two of them are the line counter [JIC and the state Indlicator
0sI., (OWA Is the third) v

0Le+2
SYNTAX ERROR
Wce2

It would appear as though the system is responsible for these two, but
in actual fact, it Is the user who Indirectly determines their values,

The (JLC varlable contains an empty numeric vector when the system has
& clear workspace. But when a user defined functlion Is executing, It
becomes a vector consisting of one or more values. Assume It contains
the value 2, : '

0zc
2

The 2 represents the line number of a user defined function which f|s
currently being executed. The system was In the process of executing
line 2 when OLC was displayed. |If the functlion has been suspended for
some reason, the suspension occured while line 2 was being evaluated.
In conjunction with the OLC variable, the [JSI variable contains the
name of the function currently executing. |f the function has become
suspended, an asterisk accompanies the function name. .

sr
DET» '

aLe
2

It appears above as If the execution of the function DET has been sus-
pended at line 2. |f DET had been called by some other function, the
name - of the calling function, and the line number from which the call
was made, would also be contained In [SI and 0LC respectively.
Suppose DET was called by a function named MS? on line 6. The con-
tents of the two system variables would look like this: )

Qsr
DET»
MST

orc
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I'f MST were again executed and DET became suspended, but this time on
line 4, the two variables would contain the following:

gsr
DET«
MST
DET»
MST

are
4 6 2 6

The latest suspension appears In the first row of the ¥ by 4 matrix of
0SI and as the first element In the N-length vector represented by
OLC. Only suspended functions are flagged with asterisks. The "pend-
ant" ones, like MST, are not.

As more and more functions become suspended and both the state iIndica-
tor (JSI and the line counter [JLC grow in size, less and less wmemory
space becomes available for other wuses. After a while, you could
eventually use up all the workspace area by simply ¢filling up the
state iIndicator with the names of suspended and pendant functlons.
Therefore, you should always keep these two variables clear of data
whenever possible. This Is accomplished by keying in the branch arrow
+ only, and pressing the RETURN key. One branch arrow on a line by

itself Is needed for every suspended function name listed.

Osr
DET»
MST
DET*
MST
<>
[ |
gsr
DET»
MST
-+
|
gsr
(btank screen)
p0SI 3
0 Y
eOLC
0

21.10




Print Precision

We saw In Chapter 2 that the OPP variable was needed to vary the num-
ber of significant digits of a number displayed on the screen. The
system default 1is flve. For Instance, the expression 2t3 creates a
repeating decimal result,

243
.66667

Even though the calculation is carried out to sixteen decimal places,
only the first five significant figures are displayed, with rounding
done on the last figure. '

We can easily determine the prinf precision setting.

1) 2
5

And altering It Is Just as easy.
0PP+2
243

.67

The values assigned to the variable can be ahy Integer from 2 to 16.

Print Time

Normally when the computer displays something on Its screen, It leaves
it there Indefinitely, Removing It requires you to press the RETURN
key. But sometimes you will want various pleces of data to be dis-
played automatically, a piece at a time, without your Intervention re-
quired each time. To do this, you must reset the print time variable
OPT from its assumed setting of Infinity to some reasonably measur-
able quantity. But before we do this, let us see how infinfty is de-
noted for this variable.

ger -
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Zero Is wused to represent infinity to the system for this variable
only.

Now to change It, we simply assign it any integer value between 1 and
255, The value of the Integer assigned represents the number  of
tenths of seconds the system Is to display its output. For instance,
the computer will display its output for 3 tenths of a second |f Opr
ils set to 3. Five second displays would require JPT to be set to 50,
This ability to vary the display time Is most useful when displaying
multidimensional arrays and when executing a defined function which is
Interactive with the user.

If at any time you wish to stop the system from automatically display-
Ing lines, press the SPACE bar. This causes the system to leave the
line currently on the screen for an indefinite period of time, or
until you signal to It to resume Its automatic display. This is done
by pressing the RETURN key.

Random Link

When -using either the roll or the deal function to select numbers at
random, the system tries to normalize the distribution of 1its selec~
tion as much as possible. This Is to insure that we get the most
evenly distributed random sample possible. To do this, It must
continually change the starting point used by Its selection algorithm
after each ? function; is executed. This starting point is a link num=-
ber in the chain of random numbers the system can generate. Each time
a roll or deal function is done, a different link is designated as the
new starting point. ‘You will notice that whenever you start a session
or clear memory, the random link is always 16807 (i.e., 7%5 ).

ORL
16807

And after executing either of the query functions, [ORL is reset to
6874,

210

ORL
6874
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By executing several query functions and displaying the ORL variable
after each one, you will notice a definite pattern In the sequence in
which the random links are determined. The reason for this Is in case
you wish to generate a certain set of observations (numbers) again to
re-establish an exact replica of some previously generated observa-
tions., But In other iInstances you may want your data to be generated,
using an entirely different link, thus eliminating any chance of colin-
cidence or redundancy In the generated data. To do this, you simply
reset the random link variable yourself to and Integer value from 1 to
32,767. '

ORL«160
0 R
2200
31 :

Workspace Availabie

To determine the amount of memory space avallable for your use, you
use the system variable (V4. '

OwA
1548

Depending on whether you have & "2, 4, or 8K" computer, the value rep-
resented by this variable when the workspace Is clear, Is the number
of bytes the computer has. This space Is used to contain both func-
tions and varlables, plus for performing whatever calculations you re-
quest [t to do. By using this variable, you can determine how much
space |s required by your programs and data, and which Is the best way
to load up memory In order to optimize the space that is available.
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Chapter 22: IDENTITY ELEMENTS

When we covered the reduction function earlier, there was one type of
argument that was not mentioned - the empty vector. If this data type
fs wused as Input, the computer's response may look a little strange.
Here are a few examples:

+/10
0

x/10
1

®/10

RANGE ERROR
B0

You may find the pattern is a bit hard to detect. This |s mainly due
to the fact that there Is none. What the empty vector does here Is
cause the system to return the identity element of the primitive func-
tion used, If It has one, that Ts. You can see the function @ does
not. But what Is an identity element?

Mathematics defines Identity elements as being those unique quantities
that, whenever used as input to some function, have no effect on the
result. For instance, when adding two numbers together, iIf one of the
numbers Is 0, the result will always be equal to the other number.

4+0

0+6.7
6,7
It does not matter if the O appears as the left or the right argument,
the result Is still the same. Therefore, the value 0 1Is defined as
being the identity element of the addition function. 1{n the case of

the multiplication function, the identity element Is 1.

1x75

6x 1
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There are actually three kinds of identity elements, There are left
{dentities, right identities, and the identity elements. When a
unique quantity such as the 0 and 1 we saw above can be either the
left or right argument of the function, it s called "the identity
element." When it can be the left argument only, It is called the
left identity. If It can appear as the right argument only, it s
called the right Identity element. A typical right identity element
is the 0 when used by the minus function.

6-0

10-0

10
Another Is the value 1 when used as a divisor.
3+

10,4541
“10.Uu45

A much easier way to determine the lidentity element of each primitive
s to simply employ the primitive to do a reduction along an empty
vector argument. (Note: Only scalar dyadics can be used.)

+/10

-/10
o]

Notice MCM/APL does not distinguish between the various types of iden-
tity elements, but rather indicates only that one exists and what it

s, For those primitives that do not have any, the responses are
RANGE ERROR's.
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Which

identity Argument
Function Element (right or left)
X+Y 0 both
XxY 1 both
X-Y 0 R
XY 1 R
XxY 1 R
XeY both
xry ©7.237...E75 both
XLy 7.237...E75 both
XY 0 L
XoY none
X'y 1 L
Xvy 0 both
XANY ‘ 1 both
XnY none
X~vY none
X<Y 0 L
XsY 1 L
X=Y 1 both
XY 1 R
X>Y 0 R
X=Y 0 both
Note: The identity elements for the relational functions < s = 2 »>

apply for logical arguments only,
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Appendix A:

Primitives

PRIMITIVES, SPECIAL SYMBOLS AND OTHERS

Meanings
Symbol Monadic Page Dyadic Page
+ ldentity 4.5 Addition 2.2
- Negation 3.6 Subtraction 2,2
x Signum b.h Multiplication 2.7
% Reciprocal 3.7 Division 2.4
* Exponential 4.7 Exponentiation 4.5
° Natural logarithm | 4.8 Logarithm L.8
r Ceiling 4,10 Maximum h.9
L Floor 4.1 Minimum 4.10
| Absolute value 5.2 Res idue 5.1
! Factorial 5.2 Combination 5.3
o Pi times 5.6 Circular 5.5
? Monadic random 5.6 Dyadic random 12,12
< Less than v 6.1
< Less than or equal to 6.1
= Equal to o 6.1
2 Greater than or equal to| 6.1
> Greater than 6.1
= Not equal 6.1
v Oor 6.3
A And 6,- 3
v Nor 6.4
~ o . Nand 6.4
P Diménsion of 11.5 Restructure 11.2
1 Index generator 11.10 Index of 11.7
L1 Indexing 11.13
€ Membership 12.1
T Encode 19.3
L@ Decode 19.1
9 and @ Reversal 18.5 Rotate 18.1
® Monadic transpose | 18.6 Dyadic transpose 18.8
» and 3 Ravel 12.9 Catenate 12.5
+ Take 12.10
+ Drop 12.11
4 Grade up 12.2
 { Grade down 12.4
° Null 19.3
N Execute 19.5
/ and # Compression 14,1
\ and X% Expansion 14.5
f/ and f# Reduction 7.1
f\ and fx Scan 7.6
f.F Inner product 17.1
o,f Outer product 117.5
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Special Symbols

Symbol Meaning Page
21 ne
i Cursor 1.3
¢) Parentheses for nesting 2.7
+ Branch 15.1
- Assign data to a variable 3.1
0 Quad for Input and output 16.1
O Quote-quad for literal input 16.5
' Quote for literal data 3.4
v Del for mode change 8.3
- Negative sign 2.2
E | Exponential notation L.6
. Period or decimal point 2.2
: Label separator 15.7
Valid APL Characters
Numerics
0123456783249
Alphabetics
ABCDEFGHIJKLMNOPQRSTU
Symbols
T T <SS 22> VAt X20€p~4 ¢
el L _vae'O()[leonuuartl|;
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Overstrikes

(o and
(o and
(v and
(» and
(o and
(' and
(- and
(A and
(v and
and
(n and
(/ and
(\ and
(o and
(0 and
(L and
(v and
(S and
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Interrupts

When the MCM/70 is computing, it Is In complete control. It does not
allow input from the user at this time and it only returns control
back to the wuser when it needs more input, or after it has finished
its calculations. If you Instruct It to perform a specific task, then
decide differently, there are two ways you can interrupt Its computa-
tions. They are called the '*hard" and "soft" interrupts.

The soft interrupt can he Invoked by pressing the CTRL key then the <+

key. This causes the computer to abandon Its execution as soon as |t
has finished with the statement it is currently on. The hard inter-
rupt causes the computer to stop much sooner. By pressing the CTRL
key and the + symbol (upper shift «), the system abandons its execu-
tion as soon as It can. It also displays a two line report. The
first .line contains the word INTERRUPT, and the second is the state-
ment It was executing, with the cursor placed over the precise char~
acter where the Interruption occured.

INTERRUPYT
A+c+fh 50
One thing to note Is that when you press the CTRL key down, hold it

down until the lights on the screen stop flashing. Otherwise, the
computer will not accept your Interruption request,
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Output Indicators

When output from the computer is being displayed on the screen, it is
accompanied by one or more vertical bars at the right end of the
screen. There are three types of these output indicators that can
occur. They are as follows:

; Output line exceeds 31 characters in length. Press RETURN
- key to receive the rest.

An array of rank greater than one s being displayed, a
row at a time. Press the RETURN to view the next row.

i Either a single Tine of output, or the last row of an
array Is being displayed. When the RETURN key Is pressed,
the system |is ready to either accept input or resume its
execution,
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Appendix B:

AVS-EASY

Almost every MCM/70 Is equipped with the tape cassette option. Your

unit may house either one or two tape drive mechanisms. Each drive
can handle any number of cassettes, and each cassette can accommodate
two major software features. One feature, called EASY (External

Allocation SYstem), serves as a permanent filing system for both data
and user defTned functions. The other feature 1Is <called AVS (A
Virtual gystem). It enables the cassette to act as an extension to
the amount of main memory space available., Both of these features are
included with every wunit having at least one tape drive. Together
they expand the power and capability of the MCM/70 far beyond 1ts
computational abilities described previously. This appendix discusses
both features in detail, pius describes some of the characteristics of
the MCM/70 tape cassettes,

Type of Cassette Used

The <cassette wused by the MCM/70 looks very similar to that used by
audio tape recorders.

" 300FEET
914 METRES

Figqure B,1: MCM/70 Tape Cassette
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1t has the same dimensions as an audio cassette and In fact can be

used by an audio recorder. But the opposite is not true. An audio
cassette 1Is wunacceptable for use by the MCM/70 to record its
electronic impulses as it Is not of digital grade quality. It Is also

required to be equipped with what is known as a pre-recorded clock
track. Tapes possessing these characteristics are supplied with ~—each
unit having the cassette option, plus additional cassettes are
available from MCM/70 distributors on request.

Before attempting to use the cassette, it Is advisable to read all of
the following information, as rather dire consequences can occur |If
you are unfamiliar with either AVS or EASY prior to their use.
Probably the most Important thing to remember when using a cassette is
that it must be closed before it iIs removed from the unit. The secon’
most important Is that each cassette must be initialized before it cu.
be used. The procedures for doing both of these activities are
discussed in detail later in this appendix.

Mounting and Dismounting a Cassette

Mounting the cassette in the MCM/70 follows the same procedure as that
of the tape recorder. The exposed tape portion is inserted first with
the side containing the statement DO NOT RECORD ON THIS SIDE being
turned face down. HNotice in Figure B.2 the offset notch at the bottom
of the cassette makes It impossible for you to mount it any other way.
If you mount the tape before beginning the session, It will wind back
and forth for a few seconds as soon as you press the START key. lts
activities during this time relate to the AVS feature and are
discussed under that section.

write protect
plug

K-protection notch

. /
this plug~
removed

Figure B.2: MHCM/70 Tape Cassette
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Activating AVS

When the tape does move back ar~ forth after the START key is pressed,

it does not necessarily mean that AVS Is being activated. What - the
system Is doing 1Is <checking to see If AVS was active while this
particular tape was mounted at the end of a session. |If it was not,
the system simply rewinds the tape. But If it was, the system

restores whatever was In the computer's memory Immediately prior to
the session's termination back to its original status just prior to
the ending of the session. This means that |if there were three
functions and two variables residing in the computer's memory at the
time the session concluded, these same three functions and two
variables would be automatically restored back into memory by the
system as soon as the START key is pressed. How this is done s
covered later, after you have learned a bit more about AVS and how the
cassette Is used as a storage medium. However, before we leave this
topic, one point to note Is that if AVS Is active at the end of the
session, the tape mounted In drive 1, or the system drive, must be
mounted prior to the start of a session in which 1t will be used.
When it is, AVS will also be automatically reactivated by the system,
Tapes falling into this category are referred to as AVS tapes.

Since we have seen that AVS can be active, we may also assume it can
be inactive as well. |If a session is Initiated without an AVS tape
mounted, AVS Is considered inactive. Therefore, the system recognizes
that the size of the main memory is the only usable space it has at
Its disposal for storing functions and variables. Even if a cassette
!s mounted later on in the session, the system retains 1{ts previous
understanding of the amount available storage space it has. It is not
until it Is explicitly stated otherwise by the user that the system
acknowledges the tape as representing additional usable space for
potential storage purposes, And the function used to accomplish this
is the following:

gxs o

This immediately makes whatever unused space there Is on the mounted
tape available to the system. |In the event that 1its main memory
should ever approach total capacity, the system can now call on the
cassette to act as additional storage space, just as If It were part
of main memory Itself, More Is mentioned in the following section
about the activating and deactivating of AVS, and why the wvalue 0 is
used above.
¥
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Tape Organization

A cassette may be wused to store either EASY or AVS related objects
only, or it may be used to store both types simultaneously, With the
AVS feature, there 1Is no format restrictions imposed on the objects
involved. A tape can contain either one or one hundred objects on It
at any one time and in any order. The system is responsible for both
writing them out to the cassette and reading them back again. But
EASY works slightly different,

This difference exists because the two features are used for two
different purposes. While AVS provides a means of extending the
computer's memory, EASY enables objects to be retained indefinitely.
The objects associated with AVS exist on tape only as long as AVS s
active, Once AVS is made Inactive, they are immediately removed from
the tape. But the tape objects belonging to EASY are perminently
filed on the tape. The only way they can be removed is by the user
Instructing the system to do so.

EASY acts as a perminent filing system. It can store objects on tape,
read them back again, and erase them entirely. |In order to do this,
EASY organizes the tape's contents Into groups. Each group can
contain any number of defined functions and variables with no
- restrictions placed on either their conformability or content. The
members in each group wusually share some common bond, such as-
pertaining to the same application, so at least they are loglcally
related. But this Is not something that is required. It just makes
it easier for the user to remember which objects refer to which
application. For Instance, one group could contain a set of routines
for performing mortgage calculations, while another holds a surveying
package, and still another has statistical analysis functions In it.
The content of each group Is strictly up to the user to define. And
the size of each group is dependent on the amount of available space
on the tape. Since each tape <can hold over 100,000 bytes of
Iinformation, a single group could theoretically be quite large. We
say theoretically because one other restriction could come into play,
depending on the memory size of the computer, which iImposes a upper
limit on the number of members possible within one group. Not only Is
the size of each group limited, but so too is the number of groups
that can be established on a single cassette. The maximum number is

256, but we will see in the section entitled "Initializing a Tape"
that this number |is physically impossible to attain on some units.,
Although some units cannot handle 256 groups, all «can easily
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accommodate well over one hundred, which Is quite adequate for most
users, The number of groups each of your tapes contain will probably
never exceed thirty.

Each group on a tape is designated by a number. The number used is
any integer from 0 to 255 and is determined by the user when the group

Is created. This means group O <could be the one containing the
mortgage routines, group 27 the surveying package, and group 200 the
statistical functions. Their creation can be in any sequence,

independent of the number used, and their members may be located
anywhere on the cassette.

Tape Related Functions

Apart from the system functions relating directly to AVS and EASY,
there are U other functions that deal with the cassette 1in general.
These five are the following:

Function Name : Meaning
Oxr initialize tape
Oxny list group numbers and their respective
contents
Oxr close tape and deactivate AVS
awe close tape and clear workspace
QoFF close tape and terminate session

The first function on the list, (OXI, is probably the least used one of
them all, yet Its role Is most Important. Without 1It, none of the
cassettes could even be accessed, Therefore, its detailed description
follows immediately, The others, with the exception of XN, are left
until near the end of the appendix to permit some exposure to EASY and
AVS first. In this way their purposes take on more relevance.
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Initializing a Tape

Every cassette has over 100K bytes of usable storage space for user
defined functions and variables. We have just seen that this space
can be logically subdivided 1iInto smaller amounts called groups,
enabling functions and variables which share some common relationship
to be linked together by means of a group number. The membership In
these groups does not have to be predetermined when the group s
created, New members can be added to existing groups as well as old
ones deleted or replaced. Both size and content of each group s
continually changing as modifications, additions, and deletions of
group contents take place. |In order to make this possible, the system
has to know two things. It must at all times know the numbers of the
groups that have been created, and the names and locations of each of
their respective contents, To do this, it establishes tape
directories containing all the relevant (information regarding each
group and their individual members. These directories are
automatically maintained by the system, with each group having its own
directory.

One of the pieces of Information stored in the group's directory is a
list of the names of the items associated with the group. Another s
their respective storage locations on the tape. Since the members of
a group may be scattered throughout the tape, each of their locations
must be contalned in the directory to provide the system with a means
of quickly accessing them. The system obtains its location address by
reading some pre-recorded information from the tape at the time |t
writes the member. This iInformation 1Is put there during an
initializing process the tape has gone through beforehand.

All tapes must be initialized before they can be used. MNew cassettes
are initialized by the following process:

1. Mount the cassette in the tape drive. For those units having
two drives, mount it in the left one.

2, Type in (10) OXI 0 and press RETURN., This system function
instructs the computer to establish its addressing scheme on
the cassette and to create a master group dirctory which will
later contaln the numbers of all the groups whenever they are
formed in the future,

The entire operation takes approximately 10 minutes,
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To re-initialize tapes that have already been Initialized, type:

(v0) 0xI 1

This second function has the same effect as clearing out all the
contents from every group on the tape. But instead of physically
going through the entire tape to do this though, it simply destroys
the master directory which points to all the group directories, and
creates a new one. Even though data may still be on the cassette
after this function is finished, they are irretrievable by the user
~and have no effect on future Items recorded. Both functions provide a
iclear" cassette suitable for use by EASY and AVS,

One point mentioned earlier referred to certain limits being Imposed
on both the number of groups a tape can hold, and the number of
members that can be Included in any particular group. This limitation
is present only on the units having 2K memories, The reason it exists
here 1is due to the amount of memory space consumed by the directories
whenever a tape group is accessed. For 1instance, within the main
directory (the directory of all the group directories), each group
number listed in It takes up 3 bytes. And each member listed 1In a
group directory uses 5 bytes., Since both the master directory and the

directory of the group being referenced are brought into memory
whenever the group is mentioned by the wuser, a sufficient amount of
memory can be consumed by the system for 1its wuse only. Therefore,

it's obvious that the more members Iin a group, and the more groups
existing on a single cassette tend to Iimpose on the amount of memory

space avallable. But since this problem Is apparent only on the 2K
units, and only under unusual circumstances, you should not encounter
it, If you keep your groups and their contents down to a reasonable
number.,

EASY

The primary purpose of EASY s to provide a convenient permanent

storage medium for user defined functions and variables. As you know,
at the end of every session, whatever is residing in main memory
disappears and is no longer retrievable at a later date. In some
cases this 1Is advantageous, but 1In most It is not. One obvious
disadvantage Is the necessity for us to redefine the same functions
and varliables very time we wish to use them. EASY eliminates this,
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It also provides wus with the capability of retaining many different
items on one cassette by dividing It into various groups. The entire
EASY feature is comprised of the following three functions:

Function
Hame Meaning
(XR read object(s) from a group
Oxw write object(s) in a group
0xp drop object(s) from a group

In order to see how each of these functions wo-ks, let us assume we
have a cassette mounted In the cassette drive, and the tape contains
five groups of items.

Existing Groups

The groups currently residing on the cassette are each represented by
a single value., To determine which values have already been assigned
to groups, the following function 1Is used:

Oxn 10
0 1 2 10 200

This vector result indicates the tape has five groups numbered 0, 1,
2, 10 and 200 on it,.

Contents of Existing Groups

To determine the names of the lItems in each particular group we use
the same [JXN function. But instead of issuing an 10 as its argument,
we use the group number.

Oxwv 10
NIM
A
BIN
B1
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The result is an N by 4 matrix with each row containing an object's
rname. The fourth column s added to facilitate readability when
ravelled.

,OXN 10
NIM A BIN B1

The [OXN function returns the names of the group's objects only, It

does not Indicate whether they are names of functions or variables.
This can only be answered by reading them into main memory first.

Reading Objects From Tape

In the last section the system indicated there are four objects In
group 10, To retrieve a <copy of one of them, we execute the
following: :

10 OXR 'NIM'

The 1left argument represents the group number and the right Is the

name of the Item being read. |t must always be enclosed in quotes.
The system function UXR (external read) instructs the system to create
a co of NIM and place it in main memory. In this way the
“orlginal“ NIM 1s left Intact on the cassette to ensure availability

for future use,

If coplfes of several objects are to be read, the right argument Is
expanded accordingly:

10 0JXR 'NIM A B1'
It may be 1In the form of a vector, or it may also be a matrix. The

advantage here being the use of the [JXN function to produce a right
argument for the [XR.

O«A«Qxy 10
NIM
A
BIN
B1
10 0OXR 4

B9



or simply

10 [JXR (JxN¥ 10

Acrtuyally the TXR funct’onrn 1s well as the nthe- EASY Functions can
accept right arguments of any rank.

When reading objects into main memory you must be careful not to
accidently replace any of the existing members, |If there is something
in memory with the same name as something to be read from tape, the
system will first erase the main memory one and then read in the tape
copy. This could be disasterous 1in some cases. Just remember it
whenever you are using this function.

Writing Objects On Tape

Creating a cassette copy of an object in main memory follows the same
procedure as that used by the [JXR function. Below the Item AVG s
written into group 10,

10 Oxw ‘tave!

SOXN 10
NIM 4 BIN B1 AVG

If group 10 did not exist beforehand, it would have been created by
the system In the process., For instance, If AVG was also stored in
the previously non-existent group 36,

36 (Jxw 'AvG!

the new group would be created on the cassette and Its associated
member would written out,

OXN 10
0 1 2 io 36 200

0xwv 36
AVG
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Objects with identical names can reside in different groups on the
same cassette, but they cannot both be affiliated to the same group.
This 1is <consistent with the principle applying to duplicate names In
main memory.

Deleting An Object From A Group

Once objects are stored on a cassette, they remain there indefinitely,
or until they are removed by the user. When It Is decided that they
should be removed, there are two ways to do It. One way Is to re-
initialize the tape as we saw earlier, When this Is done, the system
merely erases the main directory pointing to all the group directories
on the cassette. It does not go through and clear off every
individual item. But in most cases this type is not necessary since
only specific objects are Involved.

To delete tape objects selectively we use the OXD function. Here is
an example showing two members of group 10 being deleted:

.10 0XD 'NIM AVG'

,OXN 10
A BIN B1
Summary
This complete the description of EASY. Its principal use is to store
both functlions and variables on a relatively permanent basis, thus

providing a means for not only establishing a library of personalized
MCM/70 packages, but also furnishing MCM/70 users with a convenient
mechanism for exchanging packages. The grouping of logically related
items on the tape facilitates the organization of each cassette, plus
it allows for several unrelated packages to be contained on a common
device which greatly 1Increases the efficiency of the tape space
available. This grouping feature also forms a fundamental part of AVS
as we shall see in the following sections,
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AVS

Iin every computer there Is a finite amount of memory space available
in which to perform calculations and keep the programs and data

involved. Some computers have more than others. For those having a
somewhat lesser amount of memory, anything that <c¢can be done to
optimize this space Is certainly welcomed. One way optimization is

achieved in the MCM/70 is by the computer language itself. APL is the
most logical choice of Jlanguages for a small computer due to its
extremely efflicient coding properties. Programs that can be written
in one line in APL take roughly 10 to 20 line in most other languages.
Two prime examples of thils are the computer languages known as Basic
and Fortran. Most of the memory of the machines having these
languages s consumed by the programs themselves., Very little Is left
over for data and calculation space.

Another advantage the MCM/70 has over most other small computers is
AVS. The effect of this feature is to logically increase the memory

size from its present 2, 4 or 8K capacity to an amount just over 100K
bytes,

Main
Memory

Over 100K bytes of usable tape cassette

b e e -

Figure B.3: Memory Space Avallable Under AVS

This does not mean that an array having dimensions 100 by 100, or a
two-thousand line function can be defined. But It does mean that a
vast quantity of ltems, each consuming less than the total number of
main memory bytes avalilable, can be maintained simultaneously by the
system. To the user it appears as if they are all in main memory at
the same time. These items include global varliables, and inactive and
pendant functions., For Instance, in the expression

B+6
the B could be either In main memory or on the cassette. It is up to
the system to determine this and take whatever action Is necessary.
!f B is in main memory, it simply evaluates the statement., But if it
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is on the tape, the system moves B back into memory and then executes
the statement. The only indication to the user that the latter Is
taking place Is iIf he sees the tape move.

The only time objects are moved to the cassette is If the system needs

more memory space In order to carry out Its activities. 1t swaps one
or more items to and from main memory depending on when they are
needed and what the space requirements are at the time. On top of

this 1t also treats at least one of the groups on the tape as If it
too were a part of main memory. The group selected Is determined by

the wuser., As an example, suppose the following functions are in main

memory.
OrFrnN

AH

ASC

HIL

and the objects below are contained in group 6:

gxny s
SIG
AX

If group 6 Is selected to be the active group, then its contents are
just as accessable to the wuser as those in main memory. The
activation of both AVS and a tape group are achieved at the same time
and by the same function. '

Activating AVS And A Tape Group

AVS can be ‘'turned on and off'" at anytime. During most sessions it
will probably be "on'" as the only reason for it not to be is If there
is no tape to mount., The function used to activate It is

0XS group number

The right argument can be any valid group number from 0 to 255.

B13



Local And Global Groups

Under EASY all groups are regarded equally. They are all iIndependent
of one another and all are accessable to the user through the EASY
functions, But wunder AVS they are treated slightly different. In
this system, group 0 Is designated as being the '""global!" group and all
others are called "local' groups. The main distinction between these
two classifications Is that the global group is always active whenever
AVS Is active, whereas the local groups are only active if the user
requests them to be. And only one local group may be active at a
time.

Assuming no local groups are active, a schematic of the workspace
would look like that In figure B.h4.

Main : Group : Swap area é; tape for
Memory 0 workspace overflow

Figure B.4: AVS and only the global group active

The function to obtain this condition |s

0xs o
Even though all the items associated with group 0 can be referenced in
the same manner as those in main memory, they are not all placed Into
main memory when the group Is made active. Only the directory of
group 0 is read in. And it's only when the individual members 1In

group 0 are referenced by the user that they get selectively copied
In. The same rule applies to the contents of active local groups,

The following function activates group 6:
gxs e

After executing this last function, the condition of the system
appears to the user as it Is represented In Figure B.5.
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Hain Group : Group i Swap area on tape for
Memory 0 : 6 | workspace overflow
i
|

] o .

Figure B.5: AVS with both the global and local groups active

b e - — — -

Since only one local group can be active at any one time, Figure B,5

illustrates the typical configuration of the workspace that exists in
AVS, When the system Is configured into this form, all the objects
defined In the workspace section, group 0, and the active local group
6 may be referenced as if they all were contained in main memory at

the same time, But one key point to remember s that any
modiflcations made to any of the objects belonging to either the
global or the local group are also reflected on the tape. In other

words, [f we change a function 1In group 6, we will find that the
system will '"update'" group 6 to reflect this change once group 6 Is
de-activated, This also applies to the [JEX function. |[If we expunge
any members from these two groups with this function, the members are

automatically dropped from the group as well as being erased from
memory .,

Resolution Of Group Synonyms

Periodically an activated group contains an object having the same
name as another object presently In the workspace., Since no two items
can have the first three characters in their names identical to
another's, the system must take appropriate steps to prevent this from

occuring. Figure B.6 shows only AVS and the global group as being
active,

MAIN MEMORY TAPE
Workspace Group 0 : l Z}—
Directory Directory , !
[ Group O [ Swap Area
A B3 : | /
TOT AVG ' l
AVG SD !
!

e

Filgure B.6: AVS and group O active
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‘Notice that an object named AVG appears in both directories. The
system resolves this by deleting the workspace copy, thus producing a

configuration like the one shown in Figure B.7.
MAIN MEMORY TAPE
Workspace Group O

§

I

|

Directory Directory !
Group O ' Swap Area

I

!

A B3 : é[
TOT AVG |
SD ' /é

Figure B.7: Resolved AVS Workspace

The general rule for name redundancies between the objects in the

workspace and those In any group Is that the system will always
resolve it by deleting the workspace ones. |If the redundancy occurs
between the global group and the active local group, the global group
item is '"concealed'" within Its directory while the redundancy exists.
MAIN MEMORY TAPE
T T
Workspace Group 0 Group 6

| i

Directory Dlrectory Directory

b - - = = — -

| ! ’
A MST Group 0 Group 6 ,6 Swap Area
rOT BSA ; ; |
B3 ; !
L I
Figure B.8: !''Concealed' object

The concealment exists until either the B3 In group 6 is erased from
memory or group 6 is deactivated.

Status Of AVS

At any time it is possible to determine whether AVS is '"on or off."
If on, It is also possible to find out which local group is active.
Both pieces of information are derived from the function [JXV. |f AVS

B16



is not active, the result is an empty vector. |If AVS is active, the
result Is the number of the active local group.

Dxv
10

If the result is 0, no local group is active at the time, but AVS is,
(The 0 refers to the global group.)

Appending An Object To The Global Group

Before removing a cassette for the MCM/70 it Is imperative that it be
closed first. There are three ways In which this can be accomplished,
as we shall see after the next section. But whatever method is used,
the tape gets updated to reflect any changes that have occured to the
contents of the global and active local groups. The contents of the
workspace may, or may not, be written out to the tape at the same
time, depending on the closing procedure used. |f there are certain
items in the workspace that are to be retained, the best way to insure
that this 1is done is to assign them to the global group. This is
accomplished in the following manner:

X4 'object name(s)'
By doing this, the system will automatically write them out on tape
before it does the close. And by assigning them to group 0, they will

be made avallable immediately upon inserting the cassette again and
activating AVS.

Creating An Entry In The Local Group Directory

The function [1XA gives us the capablility of appending an object to the
AVS global group only. To do this to any of the local groups, we have
to either issue a [JXW or use the function [JXC. The difference between
these two functions is that []X¥ immediately writes the object involved
on the cassette and updates the directory of the group indicated. The
0X¢ function does not write the object out. It simply places the name
of the object in the group's directory. For Instance, here Ts a
typical example:

11 {1XC 'BEB'
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BEB may or may not be the name of an existing object in the workspace,
since all the system is doing 1is adding the name to group 11's
directory on the assumption that an object with this same name will be
added to the group some time in the future. Both functions require
that the local group receiving the item not be active at the time,

The convenience of this feature becomes apparent when closing the
tape. |If group 11 were made active after the [JXC added the name BEB
to group 11's directory, and if an object called BEB gets created
subsequent to the activation, and remains there wuntil the tape was
closed, the system automatically takes BEB from memory and places it
into group 11 on the tape.

Closing A Tape

The most important thing to remember when using a tape is to close it
before removing it from the unit. |If this is not done, at least some,
if not all of the data it contains may be lost. This is caused by the
directories containing the addresses of all the data on the tape not
being given an opportunity to be rewritten back on the cassette from
where they reside in main memory. Therefore this step is a necessity
whenever the «cassette 1{s used. To instruct the system to close the
tape, there are three functions available. They are as follows:

OXF 0
(awe
(JOFF

The second two we have seen before but they are mentioned again here
because of their association with AVS,

A1l  three functions cause the system to update the tape copies of the
global group and the active local group, If their workspace copies
have been altered 1{n any way. The function [JXF deactivates AVS but
leaves the contents of the workspace as they are. The opposite s
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true for the UWC function. It clears out the workspace but leaves AVS
active. And the [JOFF's main responsibility 1Is to terminate the
session. But before |t does, It takes all the contents of the
workspace and the workspace status and preserves them in the present
state on the cassette. This Is to insure that nothing is accidently
destroyed. In order to have the system restore them back in the
computer at some later date, the cassette must be mounted in the tape
drive before the START key is pressed, |f this Is done the computer
will automatically reconstruct the saved items in memory to appear as
though the [JOFF function had never been executed., If it is not done,
any attempt to access the tape will result in a TAPE ERROR. This, and

other errors can occur with the tape as we shall see in this next

section.

Tape Related Errors

Tape errors can occur for several reasons, and the messages displayed
vary depesding co¢n the cause. Three error messages relate directly
to tape access attempts. They are the following:

Hessage Probable Causes
TAPE ERROR This message Is due to either a physical problem
or a logical one. It's best to check for the

former first, which are:

- the tape is not mounted properly in the tape
drive

the write enable plug Is missing, prohibiting
the system from writing on the tape

there is not enough available space on the tape
to receive new data

- due to excessive tape wear, the system Is no

longer able to read it

The logical reasons are the following:
- the tape has not yet been initialized

- an attempt is being made to initialize a tape
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that has not yet been fully rewound, or |is
still "open"

- reference is being made to an invalid tape
drive number

- as mentioned in the previous section, if a tape
mounted in drive 1 s <closed by the [IOFF
function, while AVS |is active, it must be
mounted in the same drive before the START key
Is pressed

RANGE ERROR

an attempt is being made to Issue a XV, a [JXD,
or a [0XC to an active group. The group must be
inactive before it can receive any of these
requests.

- an attempt 1is being made to activate or
deactivate a group which <contains an object
having the same name as one listed In the [IST
matrix.

WS FULL - a JXF has been issued, but there is not enough
space available with main memory to contain all
the items that presently reside there, plus
those that have been written out on tape by
AVS, Some of them must be expunged before the
[1XF function can be performed.

Multi-Cassette Systems

in a multi-cassette system, drive 1 (the tape drive on the left side
of the unit) is called the system drive. This means that AVS uses
this drive only when performing any tape operations. The EASY
functions default to this drive, but it is able to access the other
drives by the Indexing method employed below.

10 OXR[{21'TOT' drive 2 (the one on the right side of the unit)
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Oxnful 1o drive 4 (an auxillary tape drive)
99 OxwWL1]'TOT' drive 1 (the system drive)

Above, we assumed the Index origin to be 1. If it is 0, all three
Indices used would be decremented by 1.
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ANSWERS TO PRACTICE EXERCISES

Chagter 2
1. (a) 12 (b) 108
(d) 1.5 (e) 12,75
(g) 1.2 (h) 30
(J) 16 (k) © .0512
2, 11="4
3. (6x7)+3
4, 142+10+5+3+4
5. 22+23426+23+22+27+25
168
6. (22423+26+23+422+27425)412
14
7. 14x,83
11.62
Chagter 3
1. (a) 42 (b) 5
(d) _s (e) ~.63158
(9) _73.5 (h)  10.5
(j) 1o (k) y
(m) 30 (n) 0
2. A+«B«(C+10
A
1 2 3 4 S5-6 7 8 9 10
B
1 2 3 4 5 6 7 8 9 10
c
1 2 3 4 5 6 7 8 9 10
3. Valid invalid
—Z —FD
AAA 6F
MAXIMUM Zvy
PAL
A2A

Y2684

DOMAIN ERROR

DOMAIN ERROR
10

SYNTAX ERROR



VEC+«1 2 3 4 5§
HD+'VECTOR IS'

or

5., (a) 7 8 9 10 11
(c) 2 4 6 8 10
6. (5¢49)x67-32
19 . 444
7. 15%x12
180
Chapter 4
t. (a) 5 8
(d) 42 53
(g) 8 27
(J) RANGE ERROR
(m) 1 1 0
(p) 6E3u4
2., (a) 3=»2
(d) 25%.5
3. 4=x2 3 4
16 64 256
5«2 3 4
25 125 625
4, a2 3 4
S*+2 3 U4 _
2.2361 1.17 1.4953
5. ®2 10 27.5
.69315 12,3026 -3.3142
6. 3027 243
3 5
7. 1312
7.5
69412
5.75

(5%x67-32)49

10 19

3 4 5 55§
1 2 4 8 18
9

.56

(3%3)+2%4
(X%2)+Y*2

VO ==

S~ PN, G, S, . S P
Sps? San” S S sl Seut St

-0

hx"2

(3xX%x2)+(2xX)-1

Therefore the 12 for 69 is the cheaper of the two.
((13#2)-69+12)x24
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1. (a) o (b) .5
(d) 1 (e) 2u
(g) 84 56 35 (h) 3.1416 6.2832
(1) o 1 0o "1 (j) o 1.5708
(1) any integer
from 1 to 100
2. 121337
1
3. Circumference
03
9.,4248
Area
_ 03%x2
28,274
4, A+0304+180
B+060+180
C+01204180
D+01
((104) %2+ (204 )*2
1
((10B)x204)+(20B)x104
1
((30D)-30C)+1+(30D)x30(
1.7321
30B
1.7321
5. *1005
6. ?5p2
Chapter 6
1. (a) 1 (b) 1 o 1 1 (¢) 1
(d) o (e) o o0 o (f) 1
2. (a) A<«8xB>(C (b) XeXxX=3
Chapter 7
1. (8) 18 (b) 2
(d) T1224 (e) 18 15 9
(g) 3.8 16.2 6 (h) “1224 61.2 6

(¢) 7 286.2 o0

(fF) 6 2 1

9,4248

(k) any integer
from 1 to 10

0 1

1

(¢) “a.s

(f) 2 1 s 2



2. (a) +/32 45 27 36 24

164 :
(b) ’ L02x+/32 45 27 36 24
3.28
3. H«2100 3600 5900 7100 9200
(a) +/H
‘ 27900
(b) +\H
27900 25800 22200 16300 9200
4, +/6 35 57x,25 .05 .01
3.82 '
5. (a) /4
(b) L/A
(c) (r/4)-L/4
(d) (+/4)+-/4=4
Chapter 8

1. Execution or Calculator mode and Definition mode
2. By keying in the V symbol (del)

3. It displays the number of the next line available in the
function to receive input - :

b, VC+«A HYP B
g L1]C+«((A%2)+B%x2)*.5
v

5. (a) X+10250

(b) STATS
NUMBER OF OBSERVATIONS:
10
LARGEST VALUE:
33 -
SMALLEST VALUE+
3

(c) VSTATS
[(7)'RANGE:
£sl(r/x)-L/x



(1) VSTATS
(8]1(u.1]
[4,1]'AVERAGE:"
[4.2]1(+/X)4+/X=X

(j) [4.21(+/X) 4+ /X=XV

STAT
NUMBER OF OBSERVATIONS:
10
OBSERVATIONS ARE:
36 10 3 19 7 25 22 33 21
AVERAGE: .
19.6 )
SMALLEST VALUE:
3
RANGE:
33

vapter 9

Maximum is 2.
Mintmum Is 0.

3
0

VR«LOG X
[1]R+eX
v

VA<AVG N
[1]JA«(+/N)++/N=N
v

VL REC W
C1)*PERIMETER IS:'
[2)2xL+W
(3]'AREA IS:!
["]wa '

v

VPOT«UNITS TIMES COST
(1]707+«+/UNITSx COST
v
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(d)

(e)

(f)

(g)

(h)

[91]v

STATS
NUMBER OF OBSERVATIONS:
10
LARGEST VALUE:
36
SMALLEST VALUE:
3
RANGE :
33

VSTATS
(91f2.1]
{2,1]'0OBSERVATIONS ARE:'
(2.2]x

[2.21XV

STATS
NUMBER OF OBSERVATIONS:
10 :
OBSERVATIONS ARE:
36 10 3 19 7 25 22 33 21
LARGEST VALUE:
36
SMALLEST VALUE:
3
RANGE:
33

VSTATS
(113(5] . o
[5] (press CTRL, SHIFT, and then
(6] (press CTRL, SHIFT, and then

[71] .
'[7Jv
STATS
NUMBER OF OBSERVATIONS:
10

OBSERVATIONS ARE: '
36 10 3 19 7 25 22 33 21
SMALLEST VALUE:

3 ,

RANGE :

33 .

20

the « key)
the « key)

20



Chapter 10

1. global and local

2, The name of a local variable appears In the function header line
whereas the name of a global variable does not.

3. Local variables are active and any global variables with the same
names as the locals are Inactive. All other global variables are
still active.

b, When the function whose header line contains the local variable ﬁames
is executing.

5. VZ«X PBS Y
{slCo0]

[0]VZ«X PBS Y;A;B;C
(1]v

6. VPERT
(slCo0]

(0)JVPERT;A;Q;R
(1]v

Chapter 11

1. (a) 2_2 3 4 5 6 7 8 9 10 (b) 2 4 6 8 10 12
(c) 2 "1 0 1 2 3 4 (d) 10
(e) (blank screen) (F) 1
(g) © (h) 2 2 3 4 5 6 7 8 9 10
(1) 10 20 10 (j) 1 2 3 4
(k) (blank screen) 5 6 7 8

g 10- 11 12
(1) o
2. (a) 12 (b) 15 (¢) 12 13
(d) 19 20 21 22 (e) 11 12 (f) 2 2
15 16
(g) 13 17 21 (h) 19 20 21 22 (1) 2 &
15 16 17 18
(j) 11 12 13 a1y (k) 21 12 13 1% (1) 11 12 13 1u
15 16 17 18 15 16 17 1§
19 20 21 22 - 19 20 21 22
3. (a) A<«2 3 4p200+124

(b) A[2;3;1]+36
(c) 10x4l1;;]

{(d) 4A[2;1;]«0



., (a) (V<0)/1\pV
(b) VL(V<0)/1pV]«10
4

6 10 2.3 7 10 O

Chapter 12

1. (A€10+4110)/1pA+10250

2. VR«SORT A o
[(11R«AL'ABCDEFGHIJKLMNOPQRSTUVWXYZ ' 14]
v |

3. 13+v17¢'THE LAKE WAS LIKE A SHEET OF GLASS'
LIKE '

4, A[LA'ABCDEFGHIJKLMNOPQRSTUVWXYZ2'1A[;61];]

Chapter 13
1. M
10 ) 517
1 2 110
5 7 782
7 8 627

31 15 6013
122 152 7551
L 5 981
10 15 941
27 33 1595
62 57 2128

1 1 17

1 2 33

: +\M
532 522 517
113 112 110
794 789 782
642 635 627

6059 6028 6013
7825 7705 7551

990 985 981
916 926 9u1
1655 1628 1595
19 18 17
36 35 33
+/+/M

21828




Chapter 14

1. (a) 2 & | (b) 2 0o 3 (c) (blank screen)
(d) o (e) 1 2 3 4 5 (fF) o "2 6 1.1
2. VR<LORN X
[1JR«'7=0\0pX
v

3. (a) B+«0 1 0#4

B
5 6 7 8
(b) 0 1 0\B
o 0 0 0
5 6 7 8
6o 0 0 ©

b, R«('P'=F[1;])4F

5. ('P'=F[1;])XR

Chapter 15§

1. VFLASH
[1]'HELLO!
[2]+1

v

2, VR«SUM X;I
(1lR<«Xx[1]
[2]I«2
{3]+0x1I>pX
(4]R«R+X[I]
[51I<«I+1
[6]+3

v

3. VZ+«FIB N;7T
[1]2«1 1
[2])20x\N<T«+/2["1 0+p2Z]
[(3])2«Z,T
[u]+2

1 1 2 3 5 8 13 21 34



Chapter 16

1.

NUM
ONE
Two
THREE
FOUR
FIVE
SIX
SEVEN
EIGHT
NINE
TEN
ELEVEN
TWELVE
THIRTEEN
FOURTEEN
FIFTEEN

oNUM
15 8

VSPELL ;A

[1]JA+215
[2]'SPELL ';A
[(3]R«8p(M''),8p" !
Cul+1x1Aa/R=NUM(A;]
[5]'WRONG. TRY AGAIN.'
[6]+2

v

VN«ENTER;L;M:I;A:J
(1]L+pM+t?

C2)'ENTER NAMES.!
[31+(0=pA«1"'"')/L7
[4IMeM A

(S1L«L,pA

(61+3
C71L7:08«(("14pL),J«[/L)p" !
[81I«1eL+0+\GL
C9INCI; 1 pAl«A«L(II+LII+1]4M
[10]+9xy(1ppN)2I«I+1

v



3. VGUESS

[1]J4<«2210
[2]1I+«1
[3]+0x10=B+]
[ul+1x1A/Ae2pB
[5]+(3=I«J+1)/8
[6]1'NO."
[7]+3
[8]'THEY ARE ';A
f9])+1
v
Chapter 17
1. (a) ss
(d) 55
(g) s 6 7
' 9 10 11
7 8 9
8 9 10

2. (a) 36 14
37 21

(d) 22 38

14 35

(g) s 6
7 3

9 10

11 7

7 8

9 5

8 9

10 6

P+ . xH
228.45

P+«3,5 4,75 6,9
. H«3 4p40 40 35 40 7 8 4 6 8 2 0 10

191.8

O 3w

(b)
(e)
(h)

(b)

(e)

(h)

237.5

30

18

12
15

16
17

18
30

12
20

15
25

24
16
20

13
1y

10

30 .

20

.25

(b) P13 2p3.75 3.25 5.05 4.5 7.25 6.35
Hi«4 3p40 7 8 40 8 2 35 4 0 40 6 10

Hl+,xP1

243,35 212.3
204.,9 178.7
151.45 131,75
252.8 220.5

BvE oON

(e¢) "269

" (f) 3

(i1} . 66667
2 .
1.3333
1.6667

(c) "7768
73061

(f) 3 4
mn 4

(i) .66667

o U

1.3333
.8

1,6667

a5 ol

aFoON



b, (16)e,.x16
1 2 3 M 5
2 n 6 8 10
3 6 9 12 15
y 8 12 16 20
5 10 15 20 25
6 12 18 24 30
Chapter 18
1. (a) 8 7 6 5 4 3
(¢) 2 1 (d) s
v 3 3
6 5 1
(g) 7 8 1 2 3
(k) 3 (1) 3
5 6 5
1 2 1
(p) 3 6 (q) 1
5 2 4
1 y 5
2. (a) 1 2 3 4 5 &
(d) 1 3 (e) 11
2 4 13
15
12
14

16

NO F

NN

N FEF O

6
12
18
24
30
36
1 (b) 1
(e) 5
3
1
6 (h) 1
3
5
(m) 12
14
16
18
20
22
(r) 12
13
16
17
20
21

8 (b)) 1 2 3 4 5 6 7 8 (c) 1
2

17
19
21

18
20
22

(f) 11

11
13
15

17
19
21

11
iy
15

18

19
22

20

(1) s

WY

(n) 17
19
21

11
13
15

(g) 1 o

FNo o

18
20
22

12
14
16

(h) 2

15

13
11

21
i9
17

£ N

16
14
12

22
20
is



(1) 11 14 (j) 11 19 (k) 11 12
12

20 19 20

3. e+\oM

Chapter 19

1. 215 10 7
47

2, 13 1212 2 6
102 '

3. 1760 3 121102
2 2 6

4, VDRILL;A;B;C;S

[1)A«+'0123456789"'e[JPT+605+0 0O
[2]K:B«(' '",A[T/?22 2ppA])[323]
(31B+«B[1],'=',B[2],'+-'(22]1,B[3]
[4]I:+Ex1'S'eC+(Br' '")[IB
[(5]+Ie«"WRONG'6S<«S+0 1o+Jx12(
[8]J:+Ko[J«"RIGHT'oS«S+1 1
C?71E:*YOUR SCORE IS:!
(81L.5+100x+/S[0 1;' PERCENT'

v

(1) 11
13
15

17
19
21

12
14
16

18
20
22



Index

Absolute value, |, 5.2
Adding a line to a function, 8.7
Addition, +, 2.2, 2.3
Additive ldentity, +, k.5
And, A, 6.3
Arccos, 20, 5, 5
Arccosh, '60, 5.5
Arcsin, ~10, 5.5
Arcsinh, “50, 5.5
Arctan, ~30, 5.5
Arctanh, “70, 5.5
Arguments, 3.6, 9.3
explicit and Implicit, 9.7
Arithmetic negation, -, 2,2
Arrays, 3.7
dimension of, 3.10
rank of, 3,10
restructuring of, 11,2
Assignment, «, 3.1
Asterisk, », 4.5
Averaging, 7.2, 8.2

Backspace key (BKSP), 2.8

Base value (decode), 1, 19.1

Bit, 21.6

Body, 9.1

Boolean algebra, 6.2

Brackets, [ 1, 11,13

Branching, - , 15.1-15,9
summary, 15.9

Byte, 1.4, 21,6

Calculator mode, 2.2
Cassette, tape, 1.4, Bl
Catenate, ,, 12.5
Ceiling, [, 4.10
Character, 2.8, 3.5
Circular functions, O
Conditional branch, 1
Colon, :, 15,6
Combinations, t, 5.4
Comparison tolerance, 0OCT, 21.5
Complex array, 3.11

Component, 3.8

Compression, / or f, 1h,1-14,4
Constant, 15,6

Control key (CTRL), 2.9

» 95
5.2

Coordinates of an array, 11.14
Corrections, 2.8

COSh. 60' 505

Cosine, 20, 5.5

Cursor, 1.3

Deal, 2?2, 12,12
Decimal point, ., 2.4
Decode (base value), 1,19.1
Degree of accuracy, 2.4
Degrees, 5.6
Defined functions. See Functions,
Definition mode. See Mode.
Del, v, 8.3
Deleting a line In a function, 8,10
Delta, A, 3.3
Dimension, 3.10
Dimension of, p, 11.5
Direction, 3.10
Display of

a result, 2.2

a variable's content, 3.1
Display screen, 1.2, 2.2
Division, ¢, 2.2, 2.4
Domain error, 20,2
Drop, +, 12.11
Dyadic functions, 3.6, 9.6
Dyadic random (deal), 2?2, 12.12

Dyadic transpose, &, 18.8

E-notation, 4.6
Editing of functions, 8.6-8.12
Element, 3.8, 11,16

- Empty vector

numeric, 11,11

literal, 14.7
Encode (representation), T, 19.3
Equal, =, 6.1

‘Erase function, (JEX, 3.2

Error report, 2.5, 20.1-20.7
Errors

domain, 20.2

index, 20,2

length, 20,3

range, 20.3

rank, 20.4

syntax, 20.5



tape, 20.6

value, 20.6

workspace full, 20.7
Escape from Input loop, 16.8
Evaluated input, 16.2
Execute (unquote), 2, 19.5
Execution mode, 2.1
Expansion, \ or %, 14.5
Explicit results, 9.7
Exponential, =, 4.7
Exponential notation, E, 4.6
Exponentiation, *, 4,5
Expunge function, OFX, 3.2

Factorial, !, 5.2
Floor, L, 4.11
Function definition, 8.1

Function definition mode, 8.3

Functions, display of, 8.5

Functions, editing of, 8.6-8.12

Function headers, 9.1-9.11
Function syntax, 2.6, 9.2
Functions, primitive, 3.5
Absolute value, |, 5.2
Addition, +, 2.2, 2.3
Additive ldentity, +, h.5
And, A, 6.3

Base value, 1, 19.1
Catenate, , or 3, 12.5
Ceiling, I, 4,10
Circular, o, 5.5
Combinations, !, 5.4

Compression, / or #, 14.1-14.4

Deal, 2?2, 12.12
Decode, L, 19.1
Dimension of, p, 11.5
Division, ¢, 2.2, 2.4
Drop, +, 12.11

Dyadic random (deal), ?, 12.12

Dyadic transpose, ¥, 18.8
Encode, 7, 19.3

Equal, =, 6.1 .
Exclusive or, =, 6.1
Execute, &, 19,5
Expansion, \ or %, 14.5
Exponential, =, 4.7
Exponentiation, =, &.5
Factorial, !, 5.2
Floor, L, 4.11

Grade down, ¥, 12.4

Grade up, 4, 12.2

Greater than, >, 6.1

Greater than or equal to, 2,
Index generator, 1, 11,10
Indexing, [ J, 11.13

Index of (ranking) v, 11.7
Inner product, f.F, 17.1
Less than, <, 6.1.

Less than or equal to, ®, 6.
Logarithm to a base, o, 4.8
Maximum, [, 4.9

Membership, e, 12.1

Minimum, L, 4.10

6.1

1

Monadic random (roll), ?, 5.6

Monadic transpose, §, 18.6,
Multiplication, x, 2,2

Nand, », 6.4

Natural logarithm, @, 4.8
Negation, -, 2.2

Nor, », 6.4

Not, ~, 6.5

Not equal, =, 6.1

NU!‘, %, ‘7059‘903

or, v, 6.3

Outer product, o.f, 17.5

P' t‘mes, O, 506

Power, », 4,5

Random, ?, 5.6, 12.12
Ranking (lndex of), 1, 11.7
Ravel, ,, 12.9 '
Reciprocal +, 4.3
Reduction, f/ or f#, 7.1-7.5
Representatlon, T, 19.3

Res idue, |, 5.1 ‘
Restructure (reshape), p, 11
Reversal, ¢ or ©, 18.5

Roll, 2, 5.6 |
Rotate, % or o, 18,1

Signum, x, .4’

Subtraction, -, 2.2

Take, +, 12.10

Transpose, &, 18.6, 18.8
Trigonometric functions, 5.5
Unquote (execute), &, 19.5

Functions, suspended, 10.7
Fuzz, 21.5

_ Global variables, 10.1-10.9
“Grade down, ¥, 12.4
Grade up, 4, 12,2

18.8

.2



Greater than, >,6.11 Maximum, [, 4.9
Greater than or equal to, 2, 6.1 Membership, e, 12.1
. Memory, 1.4
Header line, 9.1-9.11 Minimum, L, b4.10
editing of, 10.6 Mixed functions, 4.1, 9.5, 19.7
Heterogeneous output, 16.9 Mixed output, 16.9
Hyperbolic functions, 5.5 Mode
: - o definition, 2.1, 8.3
ldentities execution, 2.1 '
additive, +, 4.5 Monadic functions, 3.6
hyperbolic, 5.5 Monadic random (roll), ?, 5.6
trigonometric, 5.5 Monadic transpose, &, 18.6
Identity elements, 22,1 Multidimensional arrays, 3.11, 13.1
Index error, 20,2 ' construction of, 11,2
Index generator, 1, 11.10 Multiplication, x, 2.2
Index of (ranking), 1, 11.7
Index origin, 010, 21.7 Names, restrictions on, 3.3
Indexing, [ 1, 11.13 Nand, ~, 6.4
Inner product, f.F, 17.1 Natural logarithm, e, 4.8
Input Negative, , 2.3
evaluated, 2.7 Negative image, 2.8
literal, 16.5 Negation, arithmetic, -, 2.2, 4.3
numeric, 16,1 Niladic functions, 9.4
Input loop, escape from, 16.8 Nor, », 6.4
Inserting a line In a function, 8.7 Not, ~, 6.5
Interrupt procedure, 2.3, 16.8, A3 Not equal, =, 6.1
lteration, 16.8
: or, v, 6.3
K, 20.7 Order of execution, 2.5, 7.4
Keyboard, 1.1 Origin setting, 2.5, 7.4
Kilo, 20.7 Outer product, o,f, 17.5
Output, 0O, 16.4
Labels, 15.6 Output, heterogeneous, 16.9
Length error, 20.3 Overstruck characters, 4.8
Less than, <, 6.1
Less than or equal to, <, 6.1 Parallel processing, 4.2
Line counter, 0OLC, 10.7, 21.9 Parentheses, 2.7 '
Line editing, 2.8, 8.9 Pendant functions, 21.10
Literal input, 16.5 Permutations, 5.3
Literal output, 16.4, 16.5 Pi times, o, 5.6
Literals, 3.4 Planes, 11.3
Local varlables, 10.1-10.9 Polynomials, 19.2
Logarithm, natural, ®, 4.8 Power, *, 4.5
Logarithm to a base, @, 4.8 Primitive functions, 3.5, Al
Logical functions, 6.2 Print precision, (PP, 2.4, 21.11
Logical negation (not), ~, 6.5 Print time, 0PT, 21.11
Looping, 16.8 Pythagorean theorem, 9.6
Main memory, 1.4 Quad, [

Matrix, 3.8 Input, 16.1



output, 16.4 . Subtraction, -, 2,2

system functions, 21.2 Suspended functions, 10.7
system varfiables, 21,5 listing of, 21.9
Query (roll, deal), ?, 5.6, 12.12 removal of, 21.10
Quote, ', 3.4, 16.7 Syntax error, 20.5
Quote-quad, [, 16.5-16.9 System functions
OEX, 21.2
Radian, 5.5 OFN, 21.2
Radix vector, 19.1 Qor, 2.1, 21.4
Random (roll, deal), ?, 5.6, 12.12 gva, 21.2
Random link, ORL, 21,12 Owe, 21.3
Range error, 20.3 System variables
Rank, 3.10 gcr, 21.5
Rank error, 20.3 gro, 21.7
Ravel, ,, 12.9 gLc, 21.9 ‘
Reciprocal, +, 4.3 grep, 21.11
Recursive function, 9.10 gpr, 21.11
Reduction, f/ .or f#, 7.1, 13.1-13.5 ORL, 21.12
Relational functions, 6.1 gsr, 21.9
Representation, 7, 19.3 OwA, 21,13
Res idue, |, 5.1
Respecification, 3.2 Tape cassette, 1.4, B1
Restructure (reshape), p, 11.2 Tape error, 20.6, B3
RETURN key, 2.2 Take, +, 12.10
Reversal, ¢ or o, 18.5 Tangent, 30, 5.5
Rho, p, 11.2 ‘ Tanh, 70, 5.5
Roll, 2, 5.6 Tilde, ~, 6.4
Roots, 4.6 Transpose, &
Rotate, ¢ or o, 18.1 monadic, 18.6
Rounding, &4.11 dyadic, 18.8 .
Rows, 11.3 Trigonometric functlions, 5.5
Scalar, 3.7 Unconditional branch, 15,2
Scalar function, 4.1 _ Unquote (execute), ¢, 19.5
Scanning, 7.6, 13.6 User defined function, 8.1
Screen, display, 1.2, 2.2
Semicolon, ;, 10.4, 11,14 Value error, 20.6
Sign-off function, OOF, 2.1, 21.4 Variables, 3.1
Sign-on procedure, 2.1 assigning, 3.1
Signum, x, 4,4 global, 10.1
Sine, 10, 5.5 listing, 0OVA, 3.2
Sinh, 50, 5.5 local, 10.1
Slze. See Dimension. Vectors, 3.8 ‘
Sorting, 12.2, 12,4 of length 0, 11.11, 14.7
Space avallable, OWA, 21.13
Specification, «, 3.1 Workspace
Standard scalar functions, 4.1, 6.6 clear, (Owc, 21.3
START key, 2.1 available, OWA, 21.13
State indicator, 10.7, 21.9 Workspace full error, 20,7

Stop execution, 2.3, 16.8, A3









