)

How Te use ™Mo 5
CPs/i NMicpro—- CHPUTER S \KTEM

CONTENTS

1 INTRODUCTION

1.1 General Description of the CPS/1 System
1.2 Addressing

1.3 Instruction Formats

1.4 Organization

2 CENTRAL PROCESSOR INSTRUCTIONS

2.1 Memory Reference Instructions

2.2 Housekeeping Instructions

2.3 Accumulator and Working Register Instructions

3 PROGRAMMING
3.1 Introduction

3.2 Input/Output

3.3 Subroutines

3.4 Looping

3.5 Testing

3.6 Arithmetic

4 INSTRUCTION TIMES

GLOSSARY

1 INTRODUCTION

1.1 General Description of the CPS/1 System

S 0o0

* Canadian and Foreign Patents Pending.

W W N= -

[+

10

16
16
16
19
20
21
22

23

24

The CPS/1 is the first in a series of general purpose microcomputer systems by Microsystems. The system central pro-
cessor is contained entirely on one MOS LS| integrated circuit chip. System memory, depending on size, is contained
on two or more additional LSI chips. The CPU contains two memory pointers: the usual program counter (PC), and a
data pointer (DP), which allows logical, as well as physical separation, of program and data. Both the PC and the DP
are 12. bits long and can directly address 4096. memory locations. A memory expander chip is available to extend ad-
dressing capability to 256K. locations (K = 1024.). Each memory location contains 4 bits of data (one nibble, which

is half a byte).

THIS BULLETIN IS PUBLISHED AS A GUIDE FOR DESIGNERS. CIRCUIT DIAGRAMS SHOWN ILLUSTRATE TYPICAL
APPLICATIONS ONLY, AND NO RESPONSIBILITY WILL BE ASSUMED FOR ANY CONSEQUENCES OF THEIR USE.

MICROSYSTEMS INTERNATIONAL LIMITED, BOX 3529 STA.C, OTTAWA, CANADA K1Y 4J1

©1972 MICROSYSTEMS INTEANATIONAL LIMITED

Printed in Canada

microsystems

international

LO00S NILITING ‘WILSAS HILNLINOD-OHIIW L/SdD FHL 3SN OL MOH

USE OF THE CPS/1 SYSTEM
BULLETIN 50001

1.1 Continued...

The CPU uses a 12. bit address bus and a 4 bit, bi-directional data bus to connect to memory and input/output
devices, These two buses, together with the 5 control lines, form a 21. line communications bus (COMBUS). A
portion of the memory address space is allocated to input/output devices. Thus the CPU can use all its instructions
which normally refer to memory to refer to 1/O devices over the COMBUS. The COMBUS can be expanded to
handle 8 bits of bi-directional data. This allows straight-forward interfacing of byte-oriented devices. Since each
I/0 port is a memory location, the interfacing of external devices is greatly simplified.

The processor performs a program by executing instructions fetched from consecutive memory locations as count-
ed by the PC. Following the completion of an instruction, the PC is incremented by 2 or 4, depending on the length
of the instruction. Sequential program flow is altered by modifying the PC during an instruction. The CPS/1 allows
for conditional, unconditional, and subroutine call types of PC modification.

In addition to the PC and DP, two other registers are of interest to the programmer. These are the 4 bit accumulator
(AC) and the 1 bit overflow register (OF). Data can be moved into or out of the AC from memory. The contents of
a memory location can be ADD'ed or NAND'ed to the AC. The AC and OF can be rotated together left or right.
The contents of AC and OF can be tested for various conditions.

A unique feature of the CPS/1 is the set of working registers. There are eight 4 bit data registers and eight 12. bit
address registers, These are implemented as part of the memory address space and are external to the CPU chip.
Although access speed is not improved over regular memory, addressing overhead is reduced, resulting in shorter
instructions. This allows the working registers to be very effective as scratch pad storage to hold such items as inter-
mediate results and loop counts. As an additional convenience, the working registers can be addressed as normal
memeory locations.

Throughout this document decimal numbers are distinguished from octal numbers by use of periods after decimal
numbers. This is the same convention as for CPS/1 Assembler language.

1.2 Addressing

The CPS/1 can directly address 4096. nibbles of main memory. The first 32. nibbles must be RAM for implementa-
tion of the working data and address registers. The remaining memory space can be used for RAM, ROM or 1/0
addresses. Memory can be expanded to vertually any size by the use of field switching. The memory is logically
divided into 256, nibble pages by the JCDN instructions, which réeplace the 8 low-order bits of the PC when a jump
occurs. Program flow between pages takes place by normal PC incrementing between instructions, or by the ex-
change jump XPD.

The bits of the registers in the CPS/1 are numbered right to left, starting with 0.
MSB

. 0 A el

11. 10. 9. 8

e W T W B

11. 10. 9. 8 7 (] B 4 3 2 1 0

The shaded bits are those which are replaced by the DP modifier.

. 38 A . TR RS WS T

2 1 (4]

USE OF THE CPS/1 SYSTEM
BULLETIN 50001

1.2 Continued ...

Program execution starts at location 1024. following a system reset. |f less than 1024. nibbles of memory are in-
stalled, the appropriate location for program start should be assigned to address 1024..

1.3 Instruction Formats

There are two lengths of CPU instructions: 8 bit and 16. bit. Within each length class there are several different
formats. The first four bits of each instruction determine the major functions.

FUNCTION

7 o

OPERATE AND MEMORY REFERENCE
VIA UNMODIFIED DATA POINTER

WORKING REG-
ISTER ADDRESS

7 4 3 2 o

WORKING REGISTER REFERENCE

FUNCTION o

DATA POINTER

[FUNCTION 1 MODIFIER

T & ' 32 4]

MODIFIED DATA POINTER
REFERENCE TO MEMORY

T IMMEDIATE
FUNCTION DATA

7 4 3 o

SHORT IMMEDIATE (SINGLE NIBBLE)

FUNCTION IMMEDIATE DATA

16. 12, 1% (1]

LONG IMMEDIATE (THREE NIBBLES)

FUNCTION CONDITION ADDRESS

15. 12. 11. 8 7 (1]

LONG CONDITION JUMP

1.4 Organization

The CPS/1 is organized around two buses, the 4 bit data bus and the 12. bit address bus. Figure 1 shows a block
diagram of the CPU. Data and instructions enter the CPU over the data bus. Instructions are stored in OPR and
OPA. Data go to temporary storage (temp store) or to the AC. The PC/DP pair and their associated incrementer
operate from the 12.bit address bus. The data bus and address bus are buffered off the chip by the data buffer and
memory address buffer, respectively,

From the programmer’s point-of-view, the CPS/1 is better represented by the diagram of Figure 2. The hierarchy of
storage is indicated by the AC, working registers, and main memory. The DP and PC can address data and instruc-
tions in all of main memory. The working registers and the AC are addressed directly from the instructions. The
adder/shifter/incrementer in the control section operate on the AC and on memory or register data.

BULLETIN 50001

USE OF THE CPS/1 SYSTEM

: e o —
I 4] 1
|
L] .
12-BIT ADDRESS BUS .“ I I
CONTROL SIGNALS = il
T PC/DP INC
| 2 _l |
TIMING
&
CONTROL TEMP P ADD 4 ADD1
STORE
[
OFR OPA

|
|
I
g

Al

(osP)

P

P

ADDER
4 I [t
o ADD1
: oF l AC l G 5
o S e
; Yy ¥ LQ
|) DB
: = (170)
4-BIT DATA BUS S
FIG.1. CPS/1 BLOCK DIAGRAM
- OF AC
= - oP
CONTROL
< » PC
2 WORKING
REGISTERS
]
3
MAIN MEMORY
FIG.2. CPS/1 FUNCTIONAL DIAGRAM

)

USE OF THE CPSf1 SYSTEM
BULLETIN 50001

2 CENTRAL PROCESSOR INSTRUCTIONS

This chapter describes the instruction set of the CPS/1 and the effect of each instruction on the CPU registers and
memory. For ease of presentation, the instructions are grouped by function. Timing is given for each instruction in
clock cycles (memory cycles), as explained in Section 4, The mnemonics given in the boxes with each instruction
are those recognized by the assembler (CPAL/1) with two exceptions: JCDN and OPR which are not, themselves,
instructions but generic terms for classes of instructions, Where appropriate, examples of instruction usage and
special techniques of a very general nature are included. More detailed programming examples are given in Section 3.

In the instruction descriptions, these conventions are used:

XXX... represents immediate data or DP modifier bits,
DDD represents a working data register (D0-D7),
AAA represents a working address register (AQ-A7),
€ECC are the condition codes for jumps, and

PPPP is the operate micro-code.

The following general rules can be stated about the instructions:

a) The overflow register (OF) is affected only by instructions which add to, increment, or rotate the accumulator,
and those instructions which name the OF explicitly.

b) The modified-data-pointer instruction replaces bits 6 — 4 only for the duration of the instruction. At the end of
the instruction the DP resumes the value it had at the beginning of the instruction.

e [TP L LT

L0, 9. 8 7 6 5 4 3 2

¢) Incrementing the data pointer and program counter cause wrap-around at address 4095.. The carry is discarded
and the register is set to 0.

4094,
4095.

0001
0002

2.1 Memory Reference Instructions

Memory references in the CPS/1 are made using the data pointer (DP). The value of the 12. bits in the DP specifies
a memory location or the first of several consecutive locations. The DP is not automatically incremented followmg
a reference; therefore, the program is free to modify the DP as desired.

Many of the memory reference instructions allow temporary modification to the DP., In these instructions the
modification is in effect only during the fetching of the operand from memory. The modification is done by re-
placing bits 6 — 4 in the DP by the modifier from the instruction.

USE OF THE CPS/1 SYSTEM
BULLETIN 50001

2.1.1 Programming Conventions. Instructions which do not modify the DP require only the operation code to be
specified. Instructions which modify the DP require the modifying bits to be present in the operand field. Since the

modifier is 3 bits, the number must be in the range 1 — 7 (0 is no modification). These bits are indicated by XXX in
the instruction description.

2.1.2 LOAD and STORE Instructions.

LAD LOAD ACCUMULATOR 00011000 3 cycles
2 nibbles

The data at the memory location specified by the data pointer are loaded into the accumulator. The previous con-
tents of the accumulator are lost.

LAM LOAD ACCUMULATOR (MODIFIED) 00011XXX 3 cycles
2 nibbles

The data pointer is temporarily modified by replacing bits 6 — 4 with XXX from the instruction. The data at the

memory location specified by the modified data pointer are loaded into the accumulator. The previous contents of
the accumulator are lost.

SAD STORE ACCUMULATOR 00101000 3 cycles
2 nibbles

The accumulator is stored in the memory location specified by the data pointer. The contents of the accumulator
are not affected.

LDID LOAD DATA POINTER INDIRECT 10011000 5 cycles
2 nibbles

The data pointer is loaded with the three memory locations specified by the data pointer. The initial value of the

data pointeris lost. The first location from which the data pointer is loaded MUST have an address whose two low
order bits are 01,

Consider a stack of addresses which begin at location 425, To retrieve the first address from the top of the stack
the following instructions are executed:

LDI 425 5LOAD DP IMMEDIATE WITH STACK ADDRESS
LDID FFETCH FIRST ADDRESS FROM STACK
LAD 3LOAD AC WITH DATA SPECIFIED BY

$FIRST ADDRESS OF STACK

Note that the instructions which modify the data pointer do not add the modifier to the DP, but rather replace bits
6 — 4. This provides for accessing arrays of data without changing the DP. An example is two 16.digit decimal
registers located at addresses 400 and 420, respectively. The following instructions load the first digit from each
register into the accumulator: : :

USE OF THE CPS/1 SYSTEM
BULLETIN 50001

2.1.2 Continued. ..

; LDI 400 3SET DP TO FIRST REGISTER

| :

i LAD 3LOAD FIRST DIGIT OF FIRST REGISTER.

5 F sEFFECTIVE ADDRESS IS 400 ¢100000000)
LAM 1 3L0AD FIRST DIGIT OF SECOND REGISTER»
. SEFFECTIVE ADDRESS IS 420 (1000100800)
SAD 3 TRANSFER DIGIT TO FIRST REGISTER

Thus, arrays of data can be stepped through without the need to constantly save and restore the data pointer.

2.1.3 Count Instructions.

ISZD INCREMENT AND SKIP IF ZERO 01101000 4 cycles
2 nibbles

The contents of the memory location specified by the data pointer are incremented by 1. If the increment results

in zero, the PC is incremented by 4, skipping 4 locations (one 4 nibble instruction or two 2 nibble instructions).
) The OF is not affected.
A

ISZM INCREMENT AND SKIP IF ZERO 01101 XXX 4 cycles
(MODIFIED) 2 nibbles

The data pointer is temporarily modified by replacing bits 6 — 4 with XXX from the instruction. The contents of
the memory location specified by the data pointer are then incremented by 1. If the increment results in zero, the
PC is incremented by 4, skipping 4 locations. (One 4 nibble instruction or two 2 nibble instructions.) The OF is not
affected.

The two previous instructions are used to count loop iterations or to successively modify a nibble for a series of
operations. Consider a block of 12, locations which contains data from which it is desired to calculate a check sum
(the sum of all items without regard to carry overflow). The following instructions can achieve this operation:

LAI -12 3LOAD COUNT OF NEGATIVE 12
SAD 3STORE IT eDP
LOOP: .
. 3 PROCESSINGeas
I1SZD 3 INCREMENT COUNTs SKIP IF ZERO
JMP LOOP 3NOT DONE, RETURN FOR MORE PROCESSINGe

2.2 Housekeeping Instructions

: These are the instructions which affect the CPU registers other than the accumulator (AC). They are used to control
program flow by affecting the program counter (PC) and to control data flow by affecting the data pointer (DP).
There are instructions for jumping, testing, subroutine calling, incrementing and decrementing DP, and causing

) program delays. The only instructions in this group which require operands are LDI and jump.

USE OF THE CPS/1 SYSTEM
BULLETIN 50001

2.2 Continued...

NOP2 TWO NIBBLE NO OPERATION 00000000 3 cycles
2 nibbles

The program counter is advanced 2 nibbles. None of the registers are affected.

NOP4 FOUR NIBBLE NO OPERATION 1110000000000000 5 cycles
4 nibbles

The program counter is advanced 4 nibbles. None of the registers are affected.
The NOPs are used to cause program delays and to pad a program for address alignment or provide skip protection.

The program sequence below uses the ISZ instructions, but does not want the skip to affect the logic of the program
(modulo 16. counter, for instance). The NOP4 is used in place of the normal JMP following the ISZ.

-

ISZD 3 INCREMENT COUNT
NOP4 3D0 NOTHING
SAR SNEXT INSTRUCTION AFTER ISZD

The sequence has the same effect if the ISZ operand is either zero or non-zero.

LDI LOAD DATA POINTER IMMEDIATE LR[00 866690606991 5 cycles
4 nibbles

The X-bits from the instruction replace the current data pointer. This instruction is used to initially set the DP to a
known value. Note that the DP is undefined following a system reset.

J
IDP INCREMENT DATA POINTER 000010000 ,? 3 cycles
{ 2 nibbles

The data pointer (DP) is incremented by 1. If the DP is 7777 before IDP is executed, the value after incrementing
is 0000 (the incrementing is done modulo 4096.). The OF is not affected,

DDP DECREMENT DATA POINTER 10100000 b cycles
2 nibbles

The data pointer (DP) is decremented by 1. If the DP is 0000 before DDP is executed, the value after decrementing
is 7777. The OF is not affected.

XPD EXCHANGE PROGRAM COUNTER 00001111 3 cycles
AND DATA POINTER 2 nibbles

The contents of the data pointer (DP) and the program counter (PC) are swapped. The next instruction executed is
taken from the new PC,

USE OF THE CPS/1 SYSTEM
BULLETIN 50001

E)

i 2.2 Continued ...

The XPD instruction is the subroutine-call instruction. The normal sequence is as follows:

g LDI SUB1 3LOAD ADDRESS OF SUBROUTINE
AXPD SEXCHANGE PC & DP

Arguments are normally passed to the subroutine via the working registers. Return is made from the subroutine by
simply giving another XPD, which returns control to the instruction following the calling point. If the DP is required

in the subroutine, it can be saved in a working register. Note that the call sequence is pure, (i.e., re-entrant) since no
memory is modified.

JCDN JUMP ON CONDITION GROUP 1110CCCCX XXX XX XX 5 cycles
) 4 nibbles

If the conditions specified by bits CCCC are satisfied, then bits 7 — 0 of the program counter (PC) are replaced by
the X-bits of the instruction. If the conditions are not satisfied, the effect is an NOP,

{\) Special mnemonics are assigned to the conditions for jumps, as follows:
CONDITION LETTER
OF =1 T (true)
OF =10 F (false)
AC >9 G (greater than)
AC <9 L (less than or equal)
i AC =0 Z (zero)
I AC #0 N (non-zero)
|
| This can be combined to yield the 16. values of the 4 bit condition field, as follows:
CCcCC MNEMONIC CONDITIONS
0 NOP4 never jump
E 1 JG AC >98,
! 2 Jz AC=0
3 JGZ AC >9.0R,AC=0
’ 4 JT OF=1
5 JTG OF=10R, AC > 9.
6 JTZ OF=10R,AC=0
7 JTGZ OF=10R,AC >9.0R,AC=0
8 JMP always jump
9. JL AC<9.
10. JN AC#0
1L JLN AC<9, AND, AC#0
12. JF OF=0
) 13. JFL OF =0 AND, AC<9.
- C 14, JFN : OF =0AND,AC#0
156. JFLN OF =0 AND, AC<9. AND, AC#0

USE OF THE CPS/1 SYSTEM
BULLETIN 50001

2.2 Continued . ..

The jump is an “‘on page” jump, not a relative jump. For this purpose the memory is divided into pages of 256.
locations, i.e., page boundaries have 8 low-order zeros in their addresses. Since the jump consists of replacing the
low-order bits of the PC, the JMP instructions cannot cross these page boundaries, not even if the JMP is executed
on the last location of a page.

The conditional jumps are used to alter program flow in response to data-dependent conditions. As an example,
consider a loop of instructions to be executed until the overflow register (OF) is set or the accumulator is zero as
follows:

LOOP: . 3INSTRUCTIONS FOR PROCESSING
. 5DATAs s«
JTZ LOOP 3DO AGAIN IF NOT SATISFIED

2.3 Accumulator and Working Register Instructions

This group of instructions references the accumulator (AC) and/or the 16. working registers. There is one arith-
metic set of instructions and one logical set which reference the AC and memory.

2.3.1 Programming Conventions. Where a working register is required it is supplied by the programmer as an
operand. The 8 data registers are named DO through D7, and the 8 address registers, AO through A7. The working
registers can also be addressed via the data pointer (DP).

2.3.2 Arithmetic Instructions,

ADD ADD MEMORY TO ACCUMULATOR 01011000 4 cycles
2 nibbles

The data at the memory location specified by the data pointer are added to the contents of the accumulator (AC).
The original contents of AC are lost. If there is a carry from the high order bit of the AC, the overflow register (OF)
is unconditionally set to 1.

ADM ADD MEMORY TO ACCUMULATOR 01011 XXX 4 cycles
(MODIFIED) 2 nibbles

The data pointer (DP) is temporarily modified by replacing bits 6 — 4 with XXX from the instruction. The data at
the memory location specified by the modified DP are added to the contents of the accumulator (AC). The
original contents of the AC are lost. If there is a carry from the high order bit of the AC, the OF is unconditionally
setto 1.

ADR ADD REGISTER TO ACCUMULATOR 01010DDD 4 cycles
2 nibbles

The data from a working data register DDD is added to the contents of the accumulator (AC). The original contents
of AC are lost. If there is a carry from the high order bit of AC, the OF is unconditionally set to 1.

The ADD instructions can be used, in conjunction with the conditional jump instructions, to do binary and decimal
arithmetic. Consider two binary, multiple-precision numbers, A and B, each 12, nibbles (48. bits) long, and stored
at 1000 and 1020, respectively. The following routine adds B to A and stores the result C (located at 1040 in
memory).

10

©

USE OF THE CPS/1 SYSTEM
BULLETIN 50001

O

2.3.2 Continued. ..

LDI 1660 ;LOAD DP WITH ADDRESS OF 'A"
LAT =12 3SET UP LOOP COUNTER
SAR De2 3IN WORKING REGISTER D2

' CLF : CLEAR OVERFLOW REGISTER

LOOP: CLARL sCLEAR ACs LOAD CARRY INTO AC
ADD 3ADD IN A NIBBLE OF 'A®
ADM 1 3ADD IN A NIBBLE OF 'B°
SAM e 3 STORE RESULT NIBBLEs CARRY IN OF
1DP $ INCREMENT DP TO NEXT NIBBLE
ISZER ba 3sDONE YET?
JMP LOOP 35NO - RETURN FOR NEXT NIBBLE
JT OVFL 3YES, GO TO OVFL IF OVERFLOWe...

In this example, if a carry occurs in the first ADD, none can occur in the ADM, because the AC is zero.

The same routine as just described, with slight modification can perform decimal addition. Assuming D3 contains
,r:) the constant 6, the following instructions can perform this task:

-

LOOP: CLARL 3 CLEAR AC» LOAD CARRY
ADD 3ADD DIGIT OF 'A’
ADM 1 3ADD DIGIT OF 'B"
JFL STORE 3 SKIP NEXT INSTRUCTION IF AC <0Ol= 9 & OF = 0
ADR D3 3ADD CORRECTION
STORE: SAM 2 3STORE RESULT DIGIT

The number 6 is added because the AC overflows at 15. rather than at 10.. If the result is greater than 9. a carry
should result. The carry is forced by adding 6.

Consider 9, + 9, = 18., which is 8 with a 1 carry:

1001 9.
21001 +9,
1 0010 12.
+0110 +6
1 1000 18.
) Subtraction is done by complementing the subtrahend and adding. The 1's complement is used for binary, and the
9's complement for decimal.

1

USE OF THE CPS/1 SYSTEM
BULLETIN 50001

2.3.2 Continued ...
The use of 1°s complement arithmetic allows for simple complementing and carry propagation as in addition. Using

the previous example of A and B, together with C, C is calculated as : C = A —B, to 48. bits of precision, by
executing the following instructions:

LOOP1: LAM 1 3GET NIBBLE OF 'B’
COoM 3 COMPLEMENT IT
SAR D4 3SAVE IT IN A WORK REGISTER
CLARL 3LOAD CARRY FROM PREVIOUS NIBBLE
ADD 5ADD NIBBLE OF 'A"
ADR D4 3 ADD COMPLEMENT OF 'B®
5AM 2 $STORE RESULT IN 'C'
IDP 3 INCREMENT DP TO NEXT NIBBLE
I15ZR D2 3 DONE YET?
JMF LOOP1 3NOs DO NEXT NIBBLE
JF DONE 3DONE IF NO CARRY
LDI 1640 3ADD ONE TO *'C°*
LAI -12 3SET UP COUNT
SAR D2 3IN D2
CLF 3 CLEAR OF
LOOP2: CLARL 35GET CARRY
ADD $ADD NIBBLE OF 'C° c
SAD 3 AND STORE RESULT
IDP 3 INCREMENT DP FOR NEXT
I1SZR b2 3DONE ?
JMP LOOP2 3NOs DO MOREss«s
DONE 2 .

The previous instructions first calculate the 1’s complement of B, saving it in a working register. The process then
continues as in addition, After the addition is finished, the result C is incremented at LOOP 2 if there is a carry at
the end of the addition.

Decimal subtraction is done the same way except for the calculation of the 9's complement. The 9's complement is
formed for each digit by subtracting the digit from 9. (or by adding 7, which is the 2's complement of 9, and then |
forming the 2's complement of the addition). Thus decimal subtraction can be done by replacing the first 6

instructions in the above example with the following instructions:

CLARL 3 SAVE CARRY

LAR D6 3L0AD -9

ADD 1 3ADD DIGIT OF 'B’

COM s COMPLEMENT AND

IAC 3 INCREMENT TO SET 9'S COMPLEMENT :
CLF 3 CLEAR OF c
ADR 3ADD PREVIOUS CARRY

12

USE OF THE CPS/1 SYSTEM

BULLETIN 50001
:-"f\ ’
2.3.2 Continued. ..
ADD 3ADD DIGIT OF ‘A"
JFL DONE 3SKIP IF NO CARRY
ADR D3 3ADD CORRECTION

DONE s .

and inserting between the ADD and SAD in LOOP 2 the following:

JFL NOC 3CHECK IF CARRY
ADR D3 3 ADD CORRECTION
NOC: .

2.3.3 Logical Instructions.

NAD NAND MEMORY WITH ACCUMULATOR ' 01001000 4 cycles
i 2 nibbles
i\) The data at the memory location specified by the data pointer are NAND'ed with the contents of the accumulator
(AC). The original contents of the AC are lost and are replaced by the NAND’ed result.
NAM NAND MEMORY WITH 01001 XXX 4 cycles
ACCUMULATOR (MODIFIED) 2 nibbles

The data pointer (DP) is temporarily modified by replacing bits 6 — 4 with XXX from the instruction. Then a
NAD is executed with the modified DP.

NAR NAND REGISTER WITH 01000DDD 4 cycles
ACCUMULATOR 2 nibbles

The data from working register DDD are NAND’ed with the contents of the accumulator (AC). The original contents
of the AC are lost and are replaced by the NAND'ed result.

The NAND instruction provides the programmer with a single logical instruction which can easily provide the AND
and OR functions.

INPUT ND
00

01
10
1

o

Sl = = =}

These functions can be computed directly by the following algorithms:

FUNCTION DEFINITION ALGORITHM
_) AND A-B COMPLEMENT OUTPUT OF NAND
OR A-B COMPLEMENT INPUTS TO NAND

USE OF THE CPS/1 SYSTEM
BULLETIN 50001

2.3.3 Continued. ..
The following examples illustrate the use of these algorithms.

EXAMPLE 1: AND memory with AC

NAD 5NAND MEMORY TO AC
CcoM 3 COMPLEMENT TO GET AND

EXAMPLE 2: OR memory with AC

coM 3 COMPLEMENT AC
SAR 4 $SAVE IT

LAD 5LOAD ARGUMENT
coM $ COMPLEMENT IT
NABX 1 sNAND TO GET 'OR'

2.3.4 Working Register Instructions.

LAR LOAD ACCUMULATOR FROM 00010DDD 3 cycles
REGISTER 2 nibbles

The data from working data register DDD is loaded into the accumulator (AC).
SAR STORE ACCUMULATOR IN 00100DDD 3 cycles
REGISTER 2 nibbles
The contents of the accumulator (AC) are stored in working data register DDD. The AC is not affected.
LAI LOAD ACCUMULATOR IMMEDIATE 0111 XXXX 4 cycles
2 nibbles
The four bits XXXX from the instruction are loaded into the accumulator,

The LAI instruction is useful for loading loop counts. The XXXX bits can be a 2's complement number which is
incremented to zero. The following instructions illustrate this method:

LAT 3 3SET UP COUNTER (1@11)
SAR ba 5 IN DATA REGISTER &

TOP: . 3 PROCESSING
ISZER D@ 3INCREMENT & SKIP IF ZERO
JMP TOP :

14

USE OF THE CPSft SYSTEM
BULLETIN 50001

2.3.4 Continued. ..

LDR LOAD DATA POINTER FROM. 10010AAA 5 cycles
REGISTER 2 nibbles

The address from working address register AAA is loaded into the data pointer (DP),

SDR STORE DATA POINTER IN T0000AAA b cycles
REGISTER 2 nibbles

The contents of the data pointer (DP) are stored in working address register AAA. The DP is not affected.

SIDR STORE INCREMENTED DATA 10001AAA b cycles
POINTER IN REGISTER 2 nibbles

The data pointer (DP) is incremented by 1, then stored in working address register AAA. The incremented DP is
still available to the program. Incrementing a DP containing all 1's yields all O's.

ISZR INCREMENT AND SKIP IF 01100DDD 4 cycles
ZERO REGISTER 2 nibbles

The working data register DDD is incremented by 1. If the result of the increment is zero (was all 1’s), the next 4
nibbles of program are skipped.

OPR ARITHMETIC OPERATE GROUP 0011PPPP 3 cycles
2 nibbles

This set of instructions operates on the accumulator (AC) and the overflow registers (OF). Each instruction performs
one or more functions. The following table gives the value of PPPP, the mnemonic for that value (for use with the
assembler) and the actions executed. -

_!:Pff MNEMONIC DESCRIPTION

0 COM complement AC
1 RAR rotate OF and AC right one bit
2 RAL rotate OF and AC left one bit
3 IAC increment AC by 1, OF set if ACis 1111
4 CLA clear AC
B CLARR CLA then RAR
6 CLARL CLA then RAL
7 STA set AC = 0001
8 CLF clear OF
9, CLFRR CLF then RAR

10. CLFRL CLF then RAL

11, IACCF IAC then CLF

12 STF set OF =1

13. STFRR STF then RAR

14. STFRL STF then RAL

15 IACSF IAC then STF

OF AC

e e T T T3]

c

15

USE OF THE CPS/1 SYSTEM
BULLETIN 50001

2.3.4 Continued...

The sequence to form the 2's complement of two numbers is as follows:

coMm 3 COMPLEMENT AND
IAC 3 INCREMENTs (OF DESTHOYED)

To save the contents of the OF:

CLARL 3CLEAR AC AND ROTATE IN OF
SAR D@ 3 STORE AC

To retrieve the contents of the OF:

LAR D@ 3L0AD OF INTO AC
CLFRR 3 ROTATE BACK INTO OF (CLF CLEARS AC)

3 PROGRAMMING
3.1 Introduction

This section covers in detail the techniques of programming the CPS/l to perform particular tasks. Emphasis is
placed on those unique features ot the CPS/1 which are useful in micro-systems. Throughout the following discu-
ssions the mnemonics given in Section 2 are used to identify the instructions. The examples given are as processed
by CPAL/1, the CPS/1 assembler.

When the CPS/1 is initialized (reset), the only register defined is the program counter (PC). The PC is set to 2000
and program execution is initiated. From this point on the instructions are executed sequentially unless modified
by a jump or subroutine call.

3.2 Input/Qutput

Bringing data into the CPS/1 is greatly simplified over most other mini/micro-systems. Each external device con-
nected to the CPS/1 is assigned (responds to) one or more addresses in the memory space, For example, consider an
analog to digital converter (A/D) which responds as follows: each time address 6000 is sent down the address bus,
the A/D places the numeric (4 bit) representation of its analog input on the data bus. This is simply the action of a
normal memory location being read. Sending out the address results in the data in the location addressed being
placed on the data bus. Each address must have only one device associated with it; a memory location and an A/D
on the same address would cause errors.

The instructions required to read the A/D (input a value from the A/D) into the AC and also save it are as follows:

LDI 1901 3LOAD DP WITH A/D ADDRESS
LAD 3LOAD AC WITH A/D VALUE
SAR ba 3 AND SAVE FOR FURTHER PROCESSING

After this sequence is executed, the A/D value is in both the AC and D2.
The A/D takes an indeterminate time to do a conversion, Address 7000 is a flag which indicates whether the

conversion is done or not done. This flag provides for the device to put 0000 on the data bus if not done and 1111
on the bus if done. The sequence to check if done, then read the data is as follows:

16

USE OF THE CPS/1 SYSTEM
BULLETIN 50001

®

3.2 Continued. ..

LDI 1000 sLOAD DP WITH ADDRESS OF FLAG
. TEST: LAD SFETCH FLAG
| JiZ TEST 3 JUMP BACK IF NOT DONE.
1DP 3 INCREMENT DP TO ADDRESS OF VALUE
LAD 5LOAD VALUE
SAR b2 3SAVE IT

This program stays in the test loop (LAD, JZ) until the A/D signals ready by sending a non-zero flag,

Most devices like the A/D make available more than 4 bits. In this case, successive nibbles of the value are assigned
successive addresses, In addition, other control functions can be assigned. Figure 3 shows a complex A/D system

with a 16-line multiplexer. The address assignment can be as follows:
LOAD/STORE ADDRESS FUNCTION
STORE 7000 SELECT LINE :data from AC selects line 0 — 15.
STORE 7001 START CONVERSION :data from AC is ignored
LOAD 7002 DONE FLAG : 0 return indicates not done
LOAD 7003 VALUE : low order 4 bits of A/D value
LOAD 7004 VALUE : high order bits of A/D value
STORE 7005 RESET : reset A/D converter, clear flag
() A routine to select a line (the line number in the AC to start) and read the value of the analog signal into D5, D6
is as follows:
1 READ: LDI T000 5LOAD ADDRESS OF A/D INTO DP
2 SAD 3 SEND LINE NUMBER
3 IDP S INCREMENT TO START FUNCTION
4 SAD 3 3 SEND START (DATA 1S IGNORED)
[5 IDP 3 INCREMENT TO ADDRESS OF DONE FLAG
6 WAIT: LAD 3LOAD FLAG
7 JZ WAIT 3 JUMP BACK IF ZERO
8 I1DP 31T IS READYs INCREMENT TO VALUE
| 9 LAD $LOAD LOW ORDER BITS
! 10 SAR DS $SAVE THEM
{ 11 I1DP 3 INCREMENT TO NEXT NIBBLE
| 12 LAD 3LOAD NEXT NIBBLE
13 SAR D6 3AND STORE ITesesee

The following is a step-by-step analysis of this program:

1. The data pointer is loaded with the address 7000, the first address assigned to the A/D subsystem.

2. The SAD instruction normally stores the AC in the memory location specified by the data pointer, but
connected to address 7000 is not memory but the multiplexer of the A/D. The 4 bits sent over the data bus
by the SAD instruction select the proper line.

3. The IDP adds 1 to the DP. The DP now specifies location 7001.

') 4. Another SAD selects the start function in the A/D. The data from the AC which the CPU places on the data
bus are ignored by the A/D. The start pulse initiates conversion of the analogue signal.

17

USE OF THE CPSf1 SYSTEM
BULLETIN 50001

16
ANALOG el
INPUTS
|, RESET
7005
READ HIGH
7004
START RESET
READ LOW
7003
ADDRESS
DECODER
FLAG
7002
START
7001
SELECT
7000 CONVERTER
16 INPUTS
ANALOG]
DONE DONE INPUT
HESET—; ELAG s 1 OUTPUT
MULTIPLEXER
DIGITAL OUTPUTS
READ READ
HIGH l l ll 1 l 1 Low 1 T t SELECT
FLAG GATE I—-.{ GATE —l [GATE ‘-—, r GATE I-J O
-l ‘ -
DATA BUS
> & £

ADDRESS BUS

FIG.3. A/D CONVERTER SUBSYSTEM
3.2 Continued...
5. Following this IDP, the DP contains the address of the A/D DONE flag.

6. The LAD instruction reads the contents of the A/D DONE flag into the AC (i.e., when the A/D detects
address 7002, it places the flag on the data bus).

7. I the value read into the AC from the data bus is O the JZ test (jump if zero AC) is successful, control returns
to WAIT (instruction 6), and the test sequence is repeated. Only when the LAD instruction in 6 returns a 1 {
does control fall through to 8. J

18

USE OF THE CPS/1 SYSTEM
BULLETIN 50001

3.2 Continued.. .

8. The data pointer is incremented to 2003 to fetch in the first 4 bits of the numeric value of the analogue signal
selected in 2.

9. The LAD instruction causes the A/D unit to place the 4 low-order bits of the value on the data bus and load
them into the AC.

10. The SAR stores the AC in a working register in preparation for bringing in the high-order bits.

11, 12, 13 repeat 8, 9, 10 for the high order bits.
3.3 Subroutines

A subroutine is a unit of program whose function is required in more than one place in a larger program but appears
only once. Each time the function is required, the subroutine is called. This arrangement results in less memory
being required for a particular program and less time required for program preparation.

The subroutine (located at 2000) to perform the task of adding D2 to D3 and storing the result in D4 is as follows:

2000 CALC: LAl DE ;L.0AD B2 IN10 AC
2002 ADhH D3 JADD IN D3

2004 LA i 3 51T0kE LESULT

2006 CLA 3 CLEAL NC

2010 XD 5 RETUBN TO CALLER

The last instruction, XPD, is used to both call a subroutine and return from a subroutine, To call CALC from
another part of the program the following instructions are required:

LDI cenHR JLOAD ADDEESE OF SUBLOUTINE IN DP

XFD sPLACE ALDRESS OF CALC IN FCs
3AND ADLDEESE OF NEXT INSTHUCTION
3IN DF.

The CPAL/1 assembler allows the use of symbolic addresses in place of numeric addresses. The instruction below
has the same result as the previous one; i.e., the assembler recognizes that CALC begins at 2000,

LDI CALC
XPD

After entering a subroutine, the DP contains the address of the instruction immediately following the XPD which
called the subroutine. This is called the return address. If the DP is to be modified by the subroutine, the DP
(return address) must be saved in a working register.

Sometimes the arguments required by the subroutine are not contained in the working registers but are known
only at the point of calling. This situation can be handled by placing the arguments immediately following the
XPD which calls the subroutine. After the XPD, the DP contains not the return address but the address of the
argument, After the argument is fetched by the subroutine, the subroutine increments the DP to the proper return
address. The instruction sequence is as follows: :

2000 DI SUBA 3LOAD ADDRESS OF SUBA
2004 XPD 3 CALL

2006 e s DATAw « "~ 3 ARGUMENT

2007 « s NEXT INSTRUCTIONGess

19

USE OF THE CPS/1 SYSTEM
BULLETIN 50001

3.3 Continued...

The subroutine SUBA may be as follows:

SUBA: LAD sFETCH ARGUMENT (DP=2006)
I1DP 3 INCREMENT DP TO 2007
. 3 PROCESSING
XPD 3 RETURN

In place of the actual data, the argument(s) following a subroutine call can be addresses of data, as follows:

LDI SUBB 5L.OAD ADDRESS OF SUBROUTINE
KPD 3 CALL. SUBROUTINE

+« ADDRESS OF ARGUMENT

+ «NEXT INSTRUCTION

SUBB: SDR A2 3 SAVE RETURN ADDRESS
LDID 3LOAD DP WITH ADDRESS OF ARGUMENT
LAD 3LOAD ARGUMENT
. s PROCESSING
LDR A2 JRESTORE RETURN ADDRESS D
I1DP 3BUMP IT PAST ARGUMENT
1DP
IDP
XPD 3AND RETURN

In the example the data pointer must be incremented by 3 after it is restored in order to move past the address of
the argument. The hardware requires that the last octal digit of the DP be 1 or 5 prior to LDID
{i.e., XXXXXXXXXX012).

3.4 Looping

Looping is the process of repeating a group of instructions a number of times. In one type the number of times can
be known when the program is written or can be calculated during program execution. Another type of loop is one
in which the loop is done until some quantity is zero or equal to another quantity. The inclusion of “immediate’’
instructions makes simple loops easy to set up, and the 1SZ instruction makes loops easy to control. The following
instructions illustrate a typical loop:

LAT =5 5SET UP COUNT
SAR 03 5IN WORK REGISTER
TOPs .
. 3 PROCESSING
ISZR D3 3 INCREMENT COUNT, SKIP IF ZERO
JMP TOP 3NOT DONEs, RETURN FOR MORE PROCESSING
In this loop a working register is loaded with negative 5 and incremented until it is zero. The ISZR instruction has \-)
the dual function of counting and testing.

20

)

O

3.4 Continued...

USE OF THE CPS/1 SYSTEM
BULLETIN 50001

The CPAL/A assembler treats a number preceeded by a minus sign as a 2's complement., The following binary digits
are bit-patterns of some 2's complement negative numbers (2's complement is generated by complementing the
magnitude of the number, then adding 1, disregarding any carry):

-0 = 0000
=1 = 1111
-2 = 1110
—-14. = 0010
—15. = 0001
-16. = 0000

The technique of the above loop is limited to counts of 16. or less. By extending the loop count over two locations,
the count can be increased to 256.. The following instructions illustrate a count of 150, (15, X 10.).

LAI

SAR
LOOP1: LAI

SAR
LOOP2:

ISEZR
JMP
ISZR
JMP

=15
D@
-10
D1

D1
LOOP2
D@
LOOP1

DO OUTER LOOP 15 TIMES

3DO INNER LOOP 10 TIMES

3PROCESSING
3COUNT INNER LOOP

3COUNT OUTER LOOP =

This technique can be extended to use as many locations as required. Although the DP cannot be tested, it can be
used to count up to 4096 (12. bits) with the SIDR instruction, as follows:

LDI
SDR
LOOP: .

LDR
SIDR

3.5 Testing

0
A2

A2
A2

3LOAD DP WITH ZERO
3 STORE IN WORK REGISTER

s PROCESSING

3 INCREMENT DP
3WHICH IS REALLY COUNTERs s«

Only the very simplest of programs require no testing of the conditions of program or data, Most programs use the
ability to test data to determine the future action or flow of the program. The CPS/1 has a very powerful set of
instructions for testing. The AC can be tested alone or in combination with the OF. The JCDN group of instructions
provides the ability to micro-program the test conditions. The “condition” nibble is encoded as follows:

=0: NOP
X X X X
I e AE S5
AC=0
OF =1

REVERSE SENSE OF TEST

21

| i it

USE OF THE CPS/1 SYSTEM
BULLETIN 50001

3.5 Continued...

The reverse sense is applied after the other tests; therefore, all the stated conditions must be true if the sense is
reversed. This can be summarized by the following two statements:

BranchifAC > 9. OR AC=0 OR OF=1.
Branchif AC< 9. AND AC=1 AND OF=0.

In addition to the above conditions, numbers can be compared in magnitude by subtraction. If B is subtracted from
A, the OF gives the relative size of A : B, as follows:

OF A:B ;
0 A< B
1 A>B

The subtraction in this case is 1’s complement addition. The instructions are as follows:

LAR D@ 3sLOAD 'B' ‘

cCOoM SNEGATE IT__. . ¢2,¢1/c

ADR D1 $sADD IN *A*

J1 BIG s JUMP IF A>B

JZ EQU s JUMP IF A=B .

. SHERE IF A<B \ ‘
This routine has three exits: A > B, A =B, A < B. It is often necessary to mask certain bits in a group. The NAND 'S
instruction is used for this purpose. 3{)

The following instructions are used to set the two middle bits of the AC to 0. ‘

SAR D4 3 SAVE AC
LAI 9 3LOAD BIT PATTERN .
NAR D4 3NAND WITH AC

COM 3 COMPEMENT FOR "AND'

Another technique for testing is to rotate the OF and AC together in order to separate bits of a nibble. Bit 1 of the
AC can be tested by masking and executing JZ or JN. It can also be tested as follows: !

RAL 5MOVE BIT 1 INTO BIT @
RAL 3MOVE BIT @ INTO OF
JT SET 5 JJMP IF BIT WAS =1

3.6 Arithmetic

Addition and subtraction of binary and decimal numbers is explained in Section 2. Binary multiplication is done in
the CPS/1 in a manner similar to that of using pencil and paper. The following calculation illustrates C= A X B:

: A 0100 : A
: B X0011 : B
i o 0100
0100
0000

0rioo J
0001100 : C Sl

22

P
NjWw

3.6 Continued. ..

The flow chart in Fig. 4 gives the algorithm for this type of multiplication (starting with the right hand bit of B).

4 INSTRUCTION TIMES

Basic timing for the CPS/1 is supplied by a dual-phase clock. Since this clock is derived external to the CPU chip it

USE OF THE CPS[1 SYSTEM

BULLETIN 50001

can be adjusted by the system designer to meet demands of memories and other components. In the following

discussion, times are given in both clock cycles and seconds, based on a 900ns clock. The two phases, are labled 1
and @5 as shown in Fig. 5.

Fetching an instruction requires 2 cycles: 1.8us (2c). This is the time required to bring the first two (or only) nibbles
of the instruction into the CPU. The instructions then require 1, 2 or 3 cycles to execute. The instruction fetch
indicator (IF) control line is true during the first two cycles of each instruction. The lists on the next page divide

the instructions into three classes by execution time.

START

SETC=0

ADD
ATOC

SHIFT C
LEFT ONE BIT

FIG.4. FLOW CHART FOR
MULTIPLICATION

R
92
26ns —»= — 25ns —=- e 26ns
r—200ns —= r=—200ns
FIG.5. EXAMPLE OF 900ns CLOCK CYCLE

25ns

~=200ns

la— 200ns —™

HOW TO USE THE CPS/1 MICRO-COMPUTER SYSTEM. BULLETIN 50001

4 Continued...

SINGLE-CYCLE EXECUTE

TWO-CYCLE EXECUTE

THREE-CYCLE EXECUTE

(2.7us OR 3c TOTAL TIME) (3.6us OR 4c TOTAL TIME) {4.5us OR 5c TOTAL TIME)
CLA IACSF STA ADD ISZR DDP JLN LDI
CLARL IDP STF ADM LAI JF JMP LDID
CLARR LAD STFRL ADR NAD JFL JN LDR
CLF LAM STFRR ISZD NAM JFLN JT NPO4
CLFRL LAR RAL ISZM NAR JFN JTG SDR
CLFRR NOP2 RAR JG JTGZ SIDR
COMm SAD XPD JGZ JTZ
IAC SAM JL Jz
IACCF SAR
GLOSSARY
AC accumulator (4 bits)
BYTE 8 bits
c clock cycle
CPU central processing unit
DP data pointer (12. bits)
IF instruction fetch indicator
1/0 input/output
I/P input
K 1024, " i
LSI large scale integration 1 }
NIBBLE 4 bits ;
OF overflow register (1 bit)
o/P output
PC program counter (12. bits)
pROM programmable read only memory
RAM random (read/write) access memory
ROM read only memory
R/W read/write (data in, data out) indicator
head office U.S.A.: MICROSYSTEMS INTERNATIONAL INC.

800 Dorchester Boulevard West, Montreal 101, Canada. Tel. (514) 875-2814

research, development and manufacturing centre
75 Moodie Drive, Ottawa Canada. Tel, (613) 828-9191
Box 3529, Station C, Ottawa, Canada K1Y 4.1, (Mailing Address)

marketing offices

CANADA:

M I, Quet 800 Dorct Bivd., West. Tel, (514) 875-2814, TWX 610-421-4647
Ottawa 3, Ontario K1Y 4J1: Box 3529 Sta, C. Tel. (613) 828-9191, TWX 610-562-1910
Toronto, Ontario: PO, Box 247, Port Credit. Tel. (416) 279-1358

Palo Alto, Calif. 94306: 450 San Antonio Rd. Tel. (415) 493-0848, TWX 910-373-1281
Philadelphia, Huntingdon Valley, Pa. 19006: 1 Fairway Plaza. Tel. (215) WI7-5641/2

EUROPE:
B-1050B g 16 A de la Toison d'Or, Tel, (02) 13,74,65, Telex 24836

UNITED KINGDOM AND SCANDINAVIA:
London W.1, England: 1 Great Cumberland Place, Tel, (01) 402-5521, Telex 261211
{a company incorporated in Canada with limited liability)

GERMANY: MICROSYSTEMS INTERNATIONAL GmbH
D—7000 Stuttgart 1 {(W): Gustav Sieglestrasse 96. Tel. (0711) 65 31 16/26, Telex 722290

MICROSYSTEMS INTERNATIONAL LIMITED, BOX 3529 STATION C, OTTAWA, CANADA K1Y 4J1

